These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10934017)

  • 21. Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking.
    Perbal MC; Haughn G; Saedler H; Schwarz-Sommer Z
    Development; 1996 Nov; 122(11):3433-41. PubMed ID: 8951059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum.
    Ingram GC; Goodrich J; Wilkinson MD; Simon R; Haughn GW; Coen ES
    Plant Cell; 1995 Sep; 7(9):1501-10. PubMed ID: 8589630
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus.
    Egea-Cortines M; Saedler H; Sommer H
    EMBO J; 1999 Oct; 18(19):5370-9. PubMed ID: 10508169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In situ analysis of RNA and protein expression in whole mounts facilitates detection of floral gene expression dynamics.
    Zachgo S; Perbal MC; Saedler H; Schwarz-Sommer Z
    Plant J; 2000 Sep; 23(5):697-702. PubMed ID: 10972895
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism.
    Sather DN; Jovanovic M; Golenberg EM
    BMC Plant Biol; 2010 Mar; 10():46. PubMed ID: 20226063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Class B gene expression and the modified ABC model in nongrass monocots.
    Kanno A; Nakada M; Akita Y; Hirai M
    ScientificWorldJournal; 2007 Feb; 7():268-79. PubMed ID: 17334618
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.
    Zhao D; Yang M; Solava J; Ma H
    Dev Genet; 1999 Sep; 25(3):209-23. PubMed ID: 10528262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rice open beak is a negative regulator of class 1 knox genes and a positive regulator of class B floral homeotic gene.
    Horigome A; Nagasawa N; Ikeda K; Ito M; Itoh J; Nagato Y
    Plant J; 2009 Jun; 58(5):724-36. PubMed ID: 19207212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs.
    Hofer KA; Ruonala R; Albert VA
    Evodevo; 2012 Nov; 3(1):26. PubMed ID: 23116179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate.
    Li H; Liang W; Hu Y; Zhu L; Yin C; Xu J; Dreni L; Kater MM; Zhang D
    Plant Cell; 2011 Jul; 23(7):2536-52. PubMed ID: 21784949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proliferating Floral Organs (Pfo), a Lotus japonicus gene required for specifying floral meristem determinacy and organ identity, encodes an F-box protein.
    Zhang S; Sandal N; Polowick PL; Stiller J; Stougaard J; Fobert PR
    Plant J; 2003 Feb; 33(4):607-19. PubMed ID: 12609036
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ectopic expression of the AaFUL1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco.
    Ma G; Zou Q; Shi X; Tian D; Sheng Q
    Gene; 2019 May; 696():197-205. PubMed ID: 30802537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes.
    Davies B; Di Rosa A; Eneva T; Saedler H; Sommer H
    Plant J; 1996 Oct; 10(4):663-77. PubMed ID: 8893543
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant.
    Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z
    Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partial redundancy and functional specialization of E-class SEPALLATA genes in an early-diverging eudicot.
    Soza VL; Snelson CD; Hewett Hazelton KD; Di Stilio VS
    Dev Biol; 2016 Nov; 419(1):143-155. PubMed ID: 27502434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Floral patterning in Lotus japonicus.
    Dong ZC; Zhao Z; Liu CW; Luo JH; Yang J; Huang WH; Hu XH; Wang TL; Luo D
    Plant Physiol; 2005 Apr; 137(4):1272-82. PubMed ID: 15824286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conserved intragenic elements were critical for the evolution of the floral C-function.
    Causier B; Bradley D; Cook H; Davies B
    Plant J; 2009 Apr; 58(1):41-52. PubMed ID: 19054363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development.
    Flanagan CA; Hu Y; Ma H
    Plant J; 1996 Aug; 10(2):343-53. PubMed ID: 8771788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.