BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10934039)

  • 1. Nerve growth factor stimulates coupling of beta1 integrin to distinct transport mechanisms in the filopodia of growth cones.
    Grabham PW; Foley M; Umeojiako A; Goldberg DJ
    J Cell Sci; 2000 Sep; 113 ( Pt 17)():3003-12. PubMed ID: 10934039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve growth factor stimulates the accumulation of beta1 integrin at the tips of filopodia in the growth cones of sympathetic neurons.
    Grabham PW; Goldberg DJ
    J Neurosci; 1997 Jul; 17(14):5455-65. PubMed ID: 9204928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rac1-dependent actin filament organization in growth cones is necessary for beta1-integrin-mediated advance but not for growth on poly-D-lysine.
    Kuhn TB; Brown MD; Bamburg JR
    J Neurobiol; 1998 Dec; 37(4):524-40. PubMed ID: 9858256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtubule and Rac 1-dependent F-actin in growth cones.
    Grabham PW; Reznik B; Goldberg DJ
    J Cell Sci; 2003 Sep; 116(Pt 18):3739-48. PubMed ID: 12890754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trafficking of a ligand-receptor complex on the growth cones as an essential step for the uptake of nerve growth factor at the distal end of the axon: a single-molecule analysis.
    Tani T; Miyamoto Y; Fujimori KE; Taguchi T; Yanagida T; Sako Y; Harada Y
    J Neurosci; 2005 Mar; 25(9):2181-91. PubMed ID: 15745944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve growth factor induces axonal filopodia through localized microdomains of phosphoinositide 3-kinase activity that drive the formation of cytoskeletal precursors to filopodia.
    Ketschek A; Gallo G
    J Neurosci; 2010 Sep; 30(36):12185-97. PubMed ID: 20826681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nerve growth factor-induced formation of axonal filopodia and collateral branches involves the intra-axonal synthesis of regulators of the actin-nucleating Arp2/3 complex.
    Spillane M; Ketschek A; Donnelly CJ; Pacheco A; Twiss JL; Gallo G
    J Neurosci; 2012 Dec; 32(49):17671-89. PubMed ID: 23223289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NrCAM, cerebellar granule cell receptor for the neuronal adhesion molecule F3, displays an actin-dependent mobility in growth cones.
    Faivre-Sarrailh C; Falk J; Pollerberg E; Schachner M; Rougon G
    J Cell Sci; 1999 Sep; 112 Pt 18():3015-27. PubMed ID: 10462518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myosin drives retrograde F-actin flow in neuronal growth cones.
    Lin CH; Espreafico EM; Mooseker MS; Forscher P
    Neuron; 1996 Apr; 16(4):769-82. PubMed ID: 8607995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active surface transport of metabotropic glutamate receptors through binding to microtubules and actin flow.
    Serge A; Fourgeaud L; Hemar A; Choquet D
    J Cell Sci; 2003 Dec; 116(Pt 24):5015-22. PubMed ID: 14625395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance.
    Turney SG; Ahmed M; Chandrasekar I; Wysolmerski RB; Goeckeler ZM; Rioux RM; Whitesides GM; Bridgman PC
    Mol Biol Cell; 2016 Feb; 27(3):500-17. PubMed ID: 26631553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myosin IIB is required for growth cone motility.
    Bridgman PC; Dave S; Asnes CF; Tullio AN; Adelstein RS
    J Neurosci; 2001 Aug; 21(16):6159-69. PubMed ID: 11487639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recruitment of the Arp2/3 complex and mena for the stimulation of actin polymerization in growth cones by nerve growth factor.
    Goldberg DJ; Foley MS; Tang D; Grabham PW
    J Neurosci Res; 2000 May; 60(4):458-67. PubMed ID: 10797548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrin-cytoskeletal interactions in neuronal growth cones.
    Schmidt CE; Dai J; Lauffenburger DA; Sheetz MP; Horwitz AF
    J Neurosci; 1995 May; 15(5 Pt 1):3400-7. PubMed ID: 7751919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.
    Rösner H; Möller W; Wassermann T; Mihatsch J; Blum M
    Brain Res; 2007 Oct; 1176():1-10. PubMed ID: 17888886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of ezrin/radixin/moesin mediates attractive growth cone guidance through regulation of growth cone actin and adhesion receptors.
    Marsick BM; San Miguel-Ruiz JE; Letourneau PC
    J Neurosci; 2012 Jan; 32(1):282-96. PubMed ID: 22219290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones.
    Biswas S; Kalil K
    J Neurosci; 2018 Jan; 38(2):291-307. PubMed ID: 29167405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RhoA-kinase and myosin II are required for the maintenance of growth cone polarity and guidance by nerve growth factor.
    Loudon RP; Silver LD; Yee HF; Gallo G
    J Neurobiol; 2006 Jul; 66(8):847-67. PubMed ID: 16673385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth.
    Carlstrom LP; Hines JH; Henle SJ; Henley JR
    BMC Biol; 2011 Nov; 9():82. PubMed ID: 22126462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane tension, myosin force, and actin turnover maintain actin treadmill in the nerve growth cone.
    Craig EM; Van Goor D; Forscher P; Mogilner A
    Biophys J; 2012 Apr; 102(7):1503-13. PubMed ID: 22500750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.