BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 10934316)

  • 1. The clutch hypothesis revisited: ascribing the roles of actin-associated proteins in filopodial protrusion in the nerve growth cone.
    Jay DG
    J Neurobiol; 2000 Aug; 44(2):114-25. PubMed ID: 10934316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guidance of Axons by Local Coupling of Retrograde Flow to Point Contact Adhesions.
    Nichol RH; Hagen KM; Lumbard DC; Dent EW; Gómez TM
    J Neurosci; 2016 Feb; 36(7):2267-82. PubMed ID: 26888936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone.
    Sydor AM; Su AL; Wang FS; Xu A; Jay DG
    J Cell Biol; 1996 Sep; 134(5):1197-207. PubMed ID: 8794861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin dynamics in growth cone motility and navigation.
    Gomez TM; Letourneau PC
    J Neurochem; 2014 Apr; 129(2):221-34. PubMed ID: 24164353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formin 2 regulates the stabilization of filopodial tip adhesions in growth cones and affects neuronal outgrowth and pathfinding in vivo.
    Sahasrabudhe A; Ghate K; Mutalik S; Jacob A; Ghose A
    Development; 2016 Feb; 143(3):449-60. PubMed ID: 26718007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin 1c and myosin IIB serve opposing roles in lamellipodial dynamics of the neuronal growth cone.
    Diefenbach TJ; Latham VM; Yimlamai D; Liu CA; Herman IM; Jay DG
    J Cell Biol; 2002 Sep; 158(7):1207-17. PubMed ID: 12356865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The UNC-6/Netrin receptors UNC-40/DCC and UNC-5 inhibit growth cone filopodial protrusion via UNC-73/Trio, Rac-like GTPases and UNC-33/CRMP.
    Norris AD; Sundararajan L; Morgan DE; Roberts ZJ; Lundquist EA
    Development; 2014 Nov; 141(22):4395-405. PubMed ID: 25371370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filopodial protrusion driven by density-dependent Ena-TOCA-1 interactions.
    Blake TCA; Fox HM; Urbančič V; Ravishankar R; Wolowczyk A; Allgeyer ES; Mason J; Danuser G; Gallop JL
    J Cell Sci; 2024 Mar; 137(6):. PubMed ID: 38323924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do filopodia enable the growth cone to find its way?
    Koleske AJ
    Sci STKE; 2003 May; 2003(183):pe20. PubMed ID: 12759482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical role of Ena/VASP proteins for filopodia formation in neurons and in function downstream of netrin-1.
    Lebrand C; Dent EW; Strasser GA; Lanier LM; Krause M; Svitkina TM; Borisy GG; Gertler FB
    Neuron; 2004 Apr; 42(1):37-49. PubMed ID: 15066263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of growth cone and filopodial dynamics: evidence for contact-mediated retraction of filopodia leading to the tiling of sibling processes.
    Baker MW; Macagno ER
    J Comp Neurol; 2007 Feb; 500(5):850-62. PubMed ID: 17177256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics.
    Chou AM; Sem KP; Wright GD; Sudhaharan T; Ahmed S
    J Biol Chem; 2014 Aug; 289(35):24383-96. PubMed ID: 25031323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin.
    Gehler S; Shaw AE; Sarmiere PD; Bamburg JR; Letourneau PC
    J Neurosci; 2004 Nov; 24(47):10741-9. PubMed ID: 15564592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulating filopodial dynamics through actin-depolymerizing factor/cofilin.
    Fass J; Gehler S; Sarmiere P; Letourneau P; Bamburg JR
    Anat Sci Int; 2004 Dec; 79(4):173-83. PubMed ID: 15633455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortactin colocalizes with filopodial actin and accumulates at IgCAM adhesion sites in Aplysia growth cones.
    Decourt B; Munnamalai V; Lee AC; Sanchez L; Suter DM
    J Neurosci Res; 2009 Apr; 87(5):1057-68. PubMed ID: 19021290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Src and cortactin promote lamellipodia protrusion and filopodia formation and stability in growth cones.
    He Y; Ren Y; Wu B; Decourt B; Lee AC; Taylor A; Suter DM
    Mol Biol Cell; 2015 Sep; 26(18):3229-44. PubMed ID: 26224308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of lamellipodia protrusion is determined by the extent of cytosolic actin assembly.
    Dimchev G; Steffen A; Kage F; Dimchev V; Pernier J; Carlier MF; Rottner K
    Mol Biol Cell; 2017 May; 28(10):1311-1325. PubMed ID: 28331069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Filopodial initiation and a novel filament-organizing center, the focal ring.
    Steketee M; Balazovich K; Tosney KW
    Mol Biol Cell; 2001 Aug; 12(8):2378-95. PubMed ID: 11514623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the actin bundling protein fascin in growth cone morphogenesis: localization in filopodia and lamellipodia.
    Cohan CS; Welnhofer EA; Zhao L; Matsumura F; Yamashiro S
    Cell Motil Cytoskeleton; 2001 Feb; 48(2):109-20. PubMed ID: 11169763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.