BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 10934780)

  • 1. Metabolism of tryptophan in the liver: interference with decarboxylation of other aromatic amino acids.
    Drsata J; Marklová E
    Acta Medica (Hradec Kralove); 2000; 43(1):15-7. PubMed ID: 10934780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decarboxylation of L-dopa and 5-hydroxytryptophan in dispersed rat pancreas acinar cells.
    Yu EW; Stern L; Tenenhouse A
    Pharmacology; 1984; 29(4):185-92. PubMed ID: 6494232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of starvation and tryptophan administration on the metabolism of phenylalanine, tyrosine and tryptophan in isolated rat liver cells.
    Salter M; Stanley JC; Fisher MJ; Pogson CI
    Biochem J; 1984 Jul; 221(2):431-8. PubMed ID: 6477476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aromatic-L-amino-acid decarboxylase activity in mouse pancreatic islets.
    Lindström P
    Biochim Biophys Acta; 1986 Nov; 884(2):276-81. PubMed ID: 3533158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aromatic acids on the influx of aromatic amino acids in rat brain slices.
    Lähdesmäki P; Hannus ML
    Exp Brain Res; 1977 Dec; 30(4):539-48. PubMed ID: 598439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of aromatic L-amino acid decarboxylase from rat kidney and monoclonal antibody to the enzyme.
    Shirota K; Fujisawa H
    J Neurochem; 1988 Aug; 51(2):426-34. PubMed ID: 3392537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic actions of renal dopamine and 5-hydroxytryptamine: effects of amine precursors on the cell inward transfer and decarboxylation.
    Soares-da-Silva P; Pinto-do-O PC
    Br J Pharmacol; 1996 Mar; 117(6):1187-92. PubMed ID: 8882614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of the importance of individual steps in the control of aromatic amino acid metabolism.
    Salter M; Knowles RG; Pogson CI
    Biochem J; 1986 Mar; 234(3):635-47. PubMed ID: 2872885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases.
    Torrens-Spence MP; Liu P; Ding H; Harich K; Gillaspy G; Li J
    J Biol Chem; 2013 Jan; 288(4):2376-87. PubMed ID: 23204519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control of aromatic amino acid catabolism and its relationship to neurotransmitter amine synthesis.
    Pogson CI; Knowles RG; Salter M
    Crit Rev Neurobiol; 1989; 5(1):29-64. PubMed ID: 2569940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of aromatic L-amino acid decarboxylase in bacillamide C biosynthesis by Bacillus atrophaeus C89.
    Yuwen L; Zhang FL; Chen QH; Lin SJ; Zhao YL; Li ZY
    Sci Rep; 2013; 3():1753. PubMed ID: 23628927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell inward transport of L-DOPA and 3-O-methyl-L-DOPA in rat renal tubules.
    Soares-da-Silva P; Fernandes MH; Pinto-do-O PC
    Br J Pharmacol; 1994 Jun; 112(2):611-5. PubMed ID: 8075877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of aromatic amino acid decarboxylase by a group of new potential nonsteroidal anti-inflammatory drugs with antileukotrienic effects.
    Drsata J; Kuchar M
    Acta Medica (Hradec Kralove); 2003; 46(4):147-51. PubMed ID: 14965164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of the aromatic amino acids into isolated rat liver cells. Properties of uptake by two distinct systems.
    Salter M; Knowles RG; Pogson CI
    Biochem J; 1986 Jan; 233(2):499-506. PubMed ID: 3954748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase.
    Bertoldi M; Gonsalvi M; Contestabile R; Voltattorni CB
    J Biol Chem; 2002 Sep; 277(39):36357-62. PubMed ID: 12118007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.
    Torrens-Spence MP; Lazear M; von Guggenberg R; Ding H; Li J
    Phytochemistry; 2014 Oct; 106():37-43. PubMed ID: 25107664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ON THE INFLUENCE OF THE ADMINISTRATION OF AMINO ACIDS UPON THE DISTRIBUTION OF PORPHYRIN BODIES IN TISSUES. X. THE INFLUENCE OF THE ADMINISTRATION OF AROMATIC AMINO ACIDS.
    IKEDA T
    Mie Med J; 1964 Jan; 13():71-9. PubMed ID: 14221272
    [No Abstract]   [Full Text] [Related]  

  • 18. [5-HYDROXYTRYPTOPHAN DOPA DECARBOXYLASE IN NERVOUS AND CARDIAC TISSUES IN THE MOLLUSC HELIX POMATIA. INTERACTION OF SUBSTRATES IN VITRO].
    CARDOT J
    C R Hebd Seances Acad Sci; 1964 Jul; 259():902-4. PubMed ID: 14190531
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanisms by which human blood platelets accumulate glycine, gaba and amino acid precursors of putative neurotransmitters.
    Boullin DJ; Green AR
    Br J Pharmacol; 1972 May; 45(1):83-94. PubMed ID: 4339395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial purification and some properties of tryptophan decarboxylase from a Bacillus strain.
    Büki KG; Vinh DQ; Horváth I
    Acta Microbiol Hung; 1985; 32(1):65-73. PubMed ID: 4036551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.