These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10934800)

  • 1. Behavioral characterization and genetic analysis of the Drosophila melanogaster larval response to light as revealed by a novel individual assay.
    Hassan J; Busto M; Iyengar B; Campos AR
    Behav Genet; 2000 Jan; 30(1):59-69. PubMed ID: 10934800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic dissection of behavior: modulation of locomotion by light in the Drosophila melanogaster larva requires genetically distinct visual system functions.
    Busto M; Iyengar B; Campos AR
    J Neurosci; 1999 May; 19(9):3337-44. PubMed ID: 10212293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic analysis of Drosophila larval locomotion in response to intermittent light pulses.
    Scantlebury N; Sajic R; Campos AR
    Behav Genet; 2007 May; 37(3):513-24. PubMed ID: 17318369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and genetic analysis of Drosophila melanogaster photobehavior during larval development.
    Sawin-McCormack EP; Sokolowski MB; Campos AR
    J Neurogenet; 1995 Nov; 10(2):119-35. PubMed ID: 8592272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interstrain variability of larval photokinesis in Drosophila melanogaster.
    Gordesky-Gold B; Warrick JM; Kutzler DP; Neal KC; Coughlin CM; Tompkins L
    Behav Genet; 1996 Jan; 26(1):49-54. PubMed ID: 8852731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons.
    Zhang W; Ge W; Wang Z
    Eur J Neurosci; 2007 Nov; 26(9):2405-16. PubMed ID: 17970730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of amplification in Drosophila phototransduction: roles for G protein, phospholipase C, and diacylglycerol kinase.
    Hardie RC; Martin F; Cochrane GW; Juusola M; Georgiev P; Raghu P
    Neuron; 2002 Nov; 36(4):689-701. PubMed ID: 12441057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photic input pathways that mediate the Drosophila larval response to light and circadian rhythmicity are developmentally related but functionally distinct.
    Hassan J; Iyengar B; Scantlebury N; Rodriguez Moncalvo V; Campos AR
    J Comp Neurol; 2005 Jan; 481(3):266-75. PubMed ID: 15593374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lanthanum mimicks the trp photoreceptor mutant of Drosophila in the blowfly Calliphora.
    Hochstrate P
    J Comp Physiol A; 1989 Dec; 166(2):179-87. PubMed ID: 2514264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.
    Mishra AK; Bargmann BOR; Tsachaki M; Fritsch C; Sprecher SG
    Dev Biol; 2016 Feb; 410(2):164-177. PubMed ID: 26769100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Light Exposure upon Food Consumption and Brain Size in Dark-Flies (Drosophila melanogaster).
    Guillet A; Stergiou A; Carle T
    Brain Behav Evol; 2019; 94(1-4):18-26. PubMed ID: 31770768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.
    Guo Y; Wang Y; Zhang W; Meltzer S; Zanini D; Yu Y; Li J; Cheng T; Guo Z; Wang Q; Jacobs JS; Sharma Y; Eberl DF; Göpfert MC; Jan LY; Jan YN; Wang Z
    Proc Natl Acad Sci U S A; 2016 Jun; 113(26):7243-8. PubMed ID: 27298354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity and genotype × environment interactions for locomotion in Drosophila melanogaster larvae.
    Del Pino F; Salgado E; Godoy-Herrera R
    Behav Genet; 2012 Jan; 42(1):162-9. PubMed ID: 21818661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rescue of the Drosophila phototransduction mutation trp by germline transformation.
    Montell C; Jones K; Hafen E; Rubin G
    Science; 1985 Nov; 230(4729):1040-3. PubMed ID: 3933112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression and light-triggered movement of rhodopsins in the larval visual system of mosquitoes.
    Rocha M; Kimler KJ; Leming MT; Hu X; Whaley MA; O'Tousa JE
    J Exp Biol; 2015 May; 218(Pt 9):1386-92. PubMed ID: 25750414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors.
    Hardie RC; Minke B
    Neuron; 1992 Apr; 8(4):643-51. PubMed ID: 1314617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The larval optic nerve is required for the development of an identified serotonergic arborization in Drosophila melanogaster.
    Mukhopadhyay M; Campos AR
    Dev Biol; 1995 Jun; 169(2):629-43. PubMed ID: 7781904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual mutations reveal opposing effects of illumination on arousal in Drosophila.
    Cheng Y; Nash HA
    Genetics; 2008 Apr; 178(4):2413-6. PubMed ID: 18430958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of combining a cryptochrome mutation with other visual-system variants on entrainment of locomotor and adult-emergence rhythms in Drosophila.
    Mealey-Ferrara ML; Montalvo AG; Hall JC
    J Neurogenet; 2003; 17(2-3):171-221. PubMed ID: 14668199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreceptor deactivation and retinal degeneration mediated by a photoreceptor-specific protein kinase C.
    Smith DP; Ranganathan R; Hardy RW; Marx J; Tsuchida T; Zuker CS
    Science; 1991 Dec; 254(5037):1478-84. PubMed ID: 1962207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.