BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 10935206)

  • 1. QM/MM and SCRF studies of the ionization state of 8-methylpterin substrate bound to dihydrofolate reductase: existence of a low-barrier hydrogen bond.
    Cummins PL; Gready JE
    J Mol Graph Model; 2000 Feb; 18(1):42-9. PubMed ID: 10935206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetically most likely substrate and active-site protonation sites and pathways in the catalytic mechanism of dihydrofolate reductase.
    Cummins PL; Gready JE
    J Am Chem Soc; 2001 Apr; 123(15):3418-28. PubMed ID: 11472112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of linear-scaling semiempirical methods and combined quantum mechanical/molecular mechanical methods for enzymic reactions. II. An energy decomposition analysis.
    Titmuss SJ; Cummins PL; Rendell AP; Bliznyuk AA; Gready JE
    J Comput Chem; 2002 Nov; 23(14):1314-22. PubMed ID: 12214314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel mechanism-based substrates of dihydrofolate reductase and the thermodynamics of ligand binding: a comparison of theory and experiment for 8-methylpterin and 6,8-dimethylpterin.
    Cummins PL; Gready JE
    Proteins; 1993 Apr; 15(4):426-35. PubMed ID: 8460112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation.
    Cummins PL; Gready JE
    J Comput Chem; 2005 Apr; 26(6):561-8. PubMed ID: 15726569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QM/MM study of the active site of free papain and of the NMA-papain complex.
    Han WG; Tajkhorshid E; Suhai S
    J Biomol Struct Dyn; 1999 Apr; 16(5):1019-32. PubMed ID: 10333172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided drug design: a free energy perturbation study on the binding of methyl-substituted pterins and N5-deazapterins to dihydrofolate reductase.
    Cummins PL; Gready JE
    J Comput Aided Mol Des; 1993 Oct; 7(5):535-55. PubMed ID: 8294945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionization state and pKa of pterin-analogue ligands bound to dihydrofolate reductase.
    Jeong SS; Gready JE
    Eur J Biochem; 1994 May; 221(3):1055-62. PubMed ID: 8181462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of a Complete Enzymic Reaction Surface:  Reaction and Activation Free Energies for Hydride-Ion Transfer in Dihydrofolate Reductase.
    Cummins PL; Rostov IV; Gready JE
    J Chem Theory Comput; 2007 May; 3(3):1203-11. PubMed ID: 26627439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer-aided design of mechanism-based pterin analogues and MD/FEP simulations of their binding to dihydrofolate reductase.
    Gready JE; Cummins PL; Wormell P
    Adv Exp Med Biol; 1993; 338():487-92. PubMed ID: 8304164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ab initio QM/MM modelling of acetyl-CoA deprotonation in the enzyme citrate synthase.
    van der Kamp MW; Perruccio F; Mulholland AJ
    J Mol Graph Model; 2007 Oct; 26(3):676-90. PubMed ID: 17493853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-activity relationships for the 8-alkylpterins: a new class of mechanism-based substrates for dihydrofolate reductase (DHFR).
    Ivery MT; Gready JE
    Biochemistry; 1995 Mar; 34(11):3724-33. PubMed ID: 7893669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction.
    Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ
    Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations.
    Wong KY; Gao J
    Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the catalytic mechanism of AICAR transformylase by pH-dependent kinetics, mutagenesis, and quantum chemical calculations.
    Shim JH; Wall M; Benkovic SJ; Díaz N; Suárez D; Merz KM
    J Am Chem Soc; 2001 May; 123(20):4687-96. PubMed ID: 11457277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring PfDHFR reaction surface: A combined molecular dynamics and QM/MM analysis.
    Abbat S; Jaladanki CK; Bharatam PV
    J Mol Graph Model; 2019 Mar; 87():76-88. PubMed ID: 30508692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effects on dimeric self-association of 2-pyrrolidinone: an ab initio study.
    Yekeler H
    J Comput Aided Mol Des; 2001 Apr; 15(4):287-95. PubMed ID: 11349812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.