These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10935523)

  • 1. Cold acclimation and cryoprotectants in a freeze-tolerant Antarctic nematode, Panagrolaimus davidi.
    Wharton DA; Judge KF; Worland MR
    J Comp Physiol B; 2000 Jun; 170(4):321-7. PubMed ID: 10935523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cold tolerance of an Antarctic nematode that survives intracellular freezing: comparisons with other nematode species.
    Smith T; Wharton DA; Marshall CJ
    J Comp Physiol B; 2008 Jan; 178(1):93-100. PubMed ID: 17712562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing rate affects the survival of a short-term freezing stress in Panagrolaimus davidi, an Antarctic nematode that survives intracellular freezing.
    Wharton DA; Goodall G; Marshall CJ
    Cryo Letters; 2002; 23(1):5-10. PubMed ID: 11912502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infective Juveniles of the Entomopathogenic Nematode, Steinernema feltiae Produce Cryoprotectants in Response to Freezing and Cold Acclimation.
    Ali F; Wharton DA
    PLoS One; 2015; 10(10):e0141810. PubMed ID: 26509788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The environmental physiology of Antarctic terrestrial nematodes: a review.
    Wharton DA
    J Comp Physiol B; 2003 Nov; 173(8):621-8. PubMed ID: 14615899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ability of the Antarctic nematode Panagrolaimus davidi to survive intracellular freezing is dependent upon nutritional status.
    Raymond MR; Wharton DA
    J Comp Physiol B; 2013 Feb; 183(2):181-8. PubMed ID: 22836298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode
    Seybold AC; Wharton DA; Thorne MAS; Marshall CJ
    Biol Open; 2017 Dec; 6(12):1953-1959. PubMed ID: 29175859
    [No Abstract]   [Full Text] [Related]  

  • 8. Osmotic stress effects on the freezing tolerance of the antarctic nematode Panagrolaimus davidi.
    Wharton DA; To NB
    J Comp Physiol B; 1996; 166(5):344-9. PubMed ID: 8870265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi.
    Wharton DA; Goodall G; Marshall CJ
    J Exp Biol; 2003 Jan; 206(Pt 2):215-21. PubMed ID: 12477892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential scanning calorimetry studies on an Antarctic nematode (Panagrolaimus davidi) which survives intracellular freezing.
    Wharton DA; Block W
    Cryobiology; 1997 Mar; 34(2):114-21. PubMed ID: 9130384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular analysis of the cold tolerant Antarctic nematode, Panagrolaimus davidi.
    Thorne MA; Kagoshima H; Clark MS; Marshall CJ; Wharton DA
    PLoS One; 2014; 9(8):e104526. PubMed ID: 25098249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance.
    Jagdale GB; Grewal PS
    Int J Parasitol; 2003 Feb; 33(2):145-52. PubMed ID: 12633652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osmoregulation in the Antarctic nematode Panagrolaimus davidi.
    Wharton DA
    J Exp Biol; 2010 Jun; 213(Pt 12):2025-30. PubMed ID: 20511515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular snapshot of an intracellular freezing event in an Antarctic nematode.
    Thorne MAS; Seybold A; Marshall C; Wharton D
    Cryobiology; 2017 Apr; 75():117-124. PubMed ID: 28082102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique.
    Wharton DA; Downes MF; Goodall G; Marshall CJ
    Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold tolerance of the Antarctic nematodes Plectus murrayi and Scottnema lindsayae.
    Wharton DA; Raymond MR
    J Comp Physiol B; 2015 Apr; 185(3):281-9. PubMed ID: 25576363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anhydrobiosis and freezing-tolerance: adaptations that facilitate the establishment of Panagrolaimus nematodes in polar habitats.
    McGill LM; Shannon AJ; Pisani D; Félix MA; Ramløv H; Dix I; Wharton DA; Burnell AM
    PLoS One; 2015; 10(3):e0116084. PubMed ID: 25747673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for non-colligative function of small cryoprotectants in a freeze-tolerant insect.
    Toxopeus J; Koštál V; Sinclair BJ
    Proc Biol Sci; 2019 Mar; 286(1899):20190050. PubMed ID: 30890098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cold tolerance in sealworm ( Pseudoterranova decipiens) due to heat-shock adaptations.
    Stormo SK; Praebel K; Elvevoll EO
    Parasitology; 2009 Sep; 136(11):1317-24. PubMed ID: 19627634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice-active proteins from the Antarctic nematode Panagrolaimus davidi.
    Wharton DA; Barrett J; Goodall G; Marshall CJ; Ramløv H
    Cryobiology; 2005 Oct; 51(2):198-207. PubMed ID: 16102742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.