These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 10935523)
21. The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed. Raymond MR; Wharton DA J Exp Biol; 2016 Jul; 219(Pt 13):2060-5. PubMed ID: 27143749 [TBL] [Abstract][Full Text] [Related]
22. Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi. Lewis SC; Dyal LA; Hilburn CF; Weitz S; Liau WS; Lamunyon CW; Denver DR BMC Evol Biol; 2009 Jan; 9():15. PubMed ID: 19149894 [TBL] [Abstract][Full Text] [Related]
23. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica. Kawarasaki Y; Teets NM; Denlinger DL; Lee RE J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837 [TBL] [Abstract][Full Text] [Related]
24. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods. Worland MR; Block W J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994 [TBL] [Abstract][Full Text] [Related]
25. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae). Ramløv H; Wharton DA; Wilson PW Cryobiology; 1996 Dec; 33(6):607-13. PubMed ID: 8975688 [TBL] [Abstract][Full Text] [Related]
26. Intracellular freezing in the infective juveniles of Steinernema feltiae: an entomopathogenic nematode. Ali F; Wharton DA PLoS One; 2014; 9(4):e94179. PubMed ID: 24769523 [TBL] [Abstract][Full Text] [Related]
27. Multi-decadal survival of an Antarctic nematode, Plectus murrayi, in a -20°C stored moss sample. Kagoshima H; Kito K; Aizu T; Shin-i T; Kanda H; Kobayashi S; Toyoda A; Fujiyama A; Kohara Y; Convey P; Niki H Cryo Letters; 2012; 33(4):280-8. PubMed ID: 22987239 [TBL] [Abstract][Full Text] [Related]
28. The cryoprotectant system of Cope's gray treefrog, Dryophytes chrysoscelis: responses to cold acclimation, freezing, and thawing. do Amaral MCF; Frisbie J; Goldstein DL; Krane CM J Comp Physiol B; 2018 Jul; 188(4):611-621. PubMed ID: 29550887 [TBL] [Abstract][Full Text] [Related]
29. Mild desiccation rapidly increases freeze tolerance of the goldenrod gall fly, Eurosta solidaginis: evidence for drought-induced rapid cold-hardening. Levis NA; Yi SX; Lee RE J Exp Biol; 2012 Nov; 215(Pt 21):3768-73. PubMed ID: 22899523 [TBL] [Abstract][Full Text] [Related]
31. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090 [TBL] [Abstract][Full Text] [Related]
32. Effect of slow desiccation and freezing on gene transcription and stress survival of an Antarctic nematode. Adhikari BN; Wall DH; Adams BJ J Exp Biol; 2010 Jun; 213(11):1803-12. PubMed ID: 20472766 [TBL] [Abstract][Full Text] [Related]
33. Stabilization of insect cell membranes and soluble enzymes by accumulated cryoprotectants during freezing stress. Grgac R; Rozsypal J; Des Marteaux L; Štětina T; Koštál V Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2211744119. PubMed ID: 36191219 [TBL] [Abstract][Full Text] [Related]
34. Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. Wharton D; Ferns D J Exp Biol; 1995; 198(Pt 6):1381-7. PubMed ID: 9319273 [TBL] [Abstract][Full Text] [Related]
35. The oatmeal nematode Panagrellus redivivus survives moderately low temperatures by freezing tolerance and cryoprotective dehydration. Hayashi M; Wharton DA J Comp Physiol B; 2011 Apr; 181(3):335-42. PubMed ID: 21153645 [TBL] [Abstract][Full Text] [Related]
36. RELATIONSHIP BETWEEN SUPERCOOLING CAPABILITY AND CRYOPROTECTANT CONTENT IN EGGS OF PARARCYPTERA MICROPTERA MERIDIONALIS (ORTHOPTERA: ACRYPTERIDAE). Zhou XR; Li YY; Li N; Pang BP Cryo Letters; 2015; 36(4):270-7. PubMed ID: 26576002 [TBL] [Abstract][Full Text] [Related]
37. Cold-hardening during long-term acclimation in a freeze-tolerant woolly bear caterpillar, Pyrrharctia isabella. Yi SX; Lee RE J Exp Biol; 2016 Jan; 219(Pt 1):17-25. PubMed ID: 26643089 [TBL] [Abstract][Full Text] [Related]
38. Laboratory acclimation to autumn-like conditions induces freeze tolerance in the spring field cricket Gryllus veletis (Orthoptera: Gryllidae). Toxopeus J; McKinnon AH; Štětina T; Turnbull KF; Sinclair BJ J Insect Physiol; 2019; 113():9-16. PubMed ID: 30582905 [TBL] [Abstract][Full Text] [Related]
39. Effect of protective agents and previous acclimation on ethanol resistance of frozen and freeze-dried Lactobacillus plantarum strains. Bravo-Ferrada BM; Brizuela N; Gerbino E; Gómez-Zavaglia A; Semorile L; Tymczyszyn EE Cryobiology; 2015 Dec; 71(3):522-8. PubMed ID: 26586097 [TBL] [Abstract][Full Text] [Related]
40. Geographic variation of freeze-tolerance in the earthworm Dendrobaena octaedra. Rasmussen LM; Holmstrup M J Comp Physiol B; 2002 Dec; 172(8):691-8. PubMed ID: 12444468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]