These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 1093572)

  • 1. Energy requirements for the uptake of L-leucine by Saccharomyces cerevisiae.
    Ramos EH; de Bongioanni LC; Claisse ML; Stoppani AO
    Biochim Biophys Acta; 1975 Jul; 394(3):470-81. PubMed ID: 1093572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid uptake by yeasts. IV. Effect of thiol reagents on L-leucine transport in Saccharomyces cerevisiae.
    Ramos EH; De Bongioanni LC; Wainer SR; Stoppani AO
    Biochim Biophys Acta; 1983 Jun; 731(2):361-72. PubMed ID: 6342674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of L-[14C]leucine transport in Saccharomyces cerevisiae: effect of energy coupling inhibitors.
    Ramos EH; de Bongioanni LC; Stoppani AO
    Biochim Biophys Acta; 1980 Jun; 599(1):214-31. PubMed ID: 6994811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of thiamine transport in anaerobic baker's yeast by iodoacetate, 2,4-dinitrophenol N,N'-dicyclohexylcarbodiimide and fatty acids.
    Iwashima A; Nose Y
    Biochim Biophys Acta; 1975 Aug; 399(2):375-83. PubMed ID: 1100110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between glucose metabolism and oxidative phosphorylations on respiratory-competent Saccharomyces cerevisiae cells.
    Beauvoit B; Rigoulet M; Bunoust O; Raffard G; Canioni P; Guérin B
    Eur J Biochem; 1993 May; 214(1):163-72. PubMed ID: 8508788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism.
    Lin CM; Kosman DJ
    J Biol Chem; 1990 Jun; 265(16):9194-200. PubMed ID: 2188974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Determination of intracellular pH by the distribution of benzoic acid in S. cerevisiae. Amino acid transport and proton gradient].
    de Bongioanni LC; Ramos EH
    Rev Argent Microbiol; 1988; 20(1):1-15. PubMed ID: 2845476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-dependent transport of manganese into yeast cells and distribution of accumulated ions.
    Okorokov LA; Lichko LP; Kadomtseva VM; Kholodenko VP; Titovsky VT; Kulaev IS
    Eur J Biochem; 1977 May; 75(2):373-7. PubMed ID: 328273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L-leucine transport systems in Saccharomyces cerevisiae participation of GAP1, S1 and S2 transport systems.
    Kotliar N; Stella CA; Ramos EH; Mattoon JR
    Cell Mol Biol (Noisy-le-grand); 1994 Sep; 40(6):833-42. PubMed ID: 7812191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of active uptake of nucleosides and amino acids by cyclic adenosine 3' :5'-monophosphate in the yeast Schizosaccharomyces pombe.
    Foury F; Goffeau A
    J Biol Chem; 1975 Mar; 250(6):2354-62. PubMed ID: 163826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air.
    Thomas KC; Spencer M
    Can J Microbiol; 1978 Jun; 24(6):637-42. PubMed ID: 352497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae.
    Lloyd D; James CJ; Maitra PK
    Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenylate energy charge in Saccharomyces cerevisiae during starvation.
    Ball WJ; Atkinson DE
    J Bacteriol; 1975 Mar; 121(3):975-82. PubMed ID: 1090610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.
    Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM
    Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic efficiency and maintenance. Energy characteristics of Saccharomyces cerevisiae (wild type and petite) and Candida parapsilosis grown aerobically and micro-aerobically in continuous culture.
    Rogers PJ; Stewart PR
    Arch Microbiol; 1974; 99(1):25-46. PubMed ID: 4604428
    [No Abstract]   [Full Text] [Related]  

  • 16. Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae.
    Serrano R; Delafuente G
    Mol Cell Biochem; 1974 Dec; 5(3):161-71. PubMed ID: 4614087
    [No Abstract]   [Full Text] [Related]  

  • 17. Respiratory metabolism of a "petite negative"yeast Schizosaccharomyces pombe 972h-.
    Heslot H; Goffeau A; Louis C
    J Bacteriol; 1970 Oct; 104(1):473-81. PubMed ID: 4394400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of cytoplasmic respiratory deficient mutants in yeast by the folic acid analogue, methotrexate. I. Studies on the mechanism of petite induction.
    Wintersberger U; Hirsch J
    Mol Gen Genet; 1973 Oct; 126(1):61-70. PubMed ID: 4591370
    [No Abstract]   [Full Text] [Related]  

  • 19. The effect of metabolic inhibitors on the development of respiration in anaerobically grown yeast.
    Bartley W; Tustanoff ER
    Biochem J; 1966 Jun; 99(3):599-603. PubMed ID: 4290405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.