These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10935729)

  • 1. Metabolic flux analysis in Streptomyces coelicolor under various nutrient limitations.
    Naeimpoor F; Mavituna F
    Metab Eng; 2000 Apr; 2(2):140-8. PubMed ID: 10935729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nutritional control of actinorhodin production by Streptomyces coelicolor A3(2): suppressive effects of nitrogen and phosphate.
    Doull JL; Vining LC
    Appl Microbiol Biotechnol; 1990 Jan; 32(4):449-54. PubMed ID: 1366394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actinorhodin and undecylprodigiosin production in wild-type and relA mutant strains of Streptomyces coelicolor A3(2) grown in continuous culture.
    Kang SG; Jin W; Bibb M; Lee KJ
    FEMS Microbiol Lett; 1998 Nov; 168(2):221-6. PubMed ID: 9835032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield actinorhodin production in fed-batch culture by a Streptomyces lividans strain overexpressing the pathway-specific activator gene actll-ORF4.
    Bruheim P; Sletta H; Bibb MJ; White J; Levine DW
    J Ind Microbiol Biotechnol; 2002 Feb; 28(2):103-11. PubMed ID: 12074050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological control of trophophase-idiophase separation in streptomycete cultures producing secondary metabolites.
    Liao X; Vining LC; Doull JL
    Can J Microbiol; 1995; 41(4-5):309-15. PubMed ID: 8590411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon flux distribution in antibiotic-producing chemostat cultures of Streptomyces lividans.
    Avignone Rossa C; White J; Kuiper A; Postma PW; Bibb M; Teixeira de Mattos MJ
    Metab Eng; 2002 Apr; 4(2):138-50. PubMed ID: 12009793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Culture conditions promoting dispersed growth and biphasic production of actinorhodin in shaken cultures of Streptomyces coelicolor A3(2).
    Doull JL; Vining LC
    FEMS Microbiol Lett; 1989 Dec; 53(3):265-8. PubMed ID: 2612889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2).
    Sun J; Hesketh A; Bibb M
    J Bacteriol; 2001 Jun; 183(11):3488-98. PubMed ID: 11344157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis.
    Martín JF; Rodríguez-García A; Liras P
    J Antibiot (Tokyo); 2017 May; 70(5):534-541. PubMed ID: 28293039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis.
    Farid MA; el-Enshasy HA; el-Diwany AI; el-Sayed el-S A
    J Basic Microbiol; 2000; 40(3):157-66. PubMed ID: 10957957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of N- and P-dependence of nikkomycin production in continuous culture with immobilized cells.
    Trück HU; Chmiel H; Hammes WP; Trösch W
    Appl Microbiol Biotechnol; 1990 May; 33(2):139-44. PubMed ID: 1366454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor.
    Kim HB; Smith CP; Micklefield J; Mavituna F
    Metab Eng; 2004 Oct; 6(4):313-25. PubMed ID: 15491861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flux balance analysis in the production of clavulanic acid by Streptomyces clavuligerus.
    Sánchez C; Quintero JC; Ochoa S
    Biotechnol Prog; 2015; 31(5):1226-36. PubMed ID: 26171767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular glucose 6-phosphate content in Streptomyces coelicolor upon environmental changes in a defined medium.
    Mira de Orduña R; Theobald U
    J Biotechnol; 2000 Feb; 77(2-3):209-18. PubMed ID: 10682280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Metabolism of phosphate-limited Streptomyces cultures. III. The ambivalent effect of phosphates in nourseothricin-producing cultures of Streptomyces noursei JA 3890b].
    Müller PJ; Ozegowski JH
    Zentralbl Bakteriol Mikrobiol Hyg A; 1985 Aug; 260(1):15-34. PubMed ID: 2998122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of cephamycin by resting cells of Streptomyces lactamdurans L 2/6.
    Chmiel A; Brzeszczyńska A; Kabza B
    Acta Microbiol Pol; 1986; 35(3-4):251-7. PubMed ID: 2436452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the activity of immobilised and freely suspended Streptomyces coelicolor A3(2).
    Ozergin-Ulgen K; Mavituna F
    Appl Microbiol Biotechnol; 1994 Apr; 41(2):197-202. PubMed ID: 7764831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of a high-quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2).
    Kim M; Sang Yi J; Kim J; Kim JN; Kim MW; Kim BG
    Biotechnol J; 2014 Sep; 9(9):1185-94. PubMed ID: 24623710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors affecting the biosynthesis of mitomycins by Streptomyces caespitosus.
    Abou-Zeid AA; Yousef AA
    Acta Microbiol Pol A; 1972; 4(3):119-26. PubMed ID: 4627036
    [No Abstract]   [Full Text] [Related]  

  • 20. Ammonium effects on streptonigrin biosynthesis by Streptomyces flocculus.
    Wallace KK; Payne GF; Speedie MK
    J Ind Microbiol; 1990 Sep; 6(1):43-8. PubMed ID: 1366800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.