These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10935871)

  • 1. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star.
    Veran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.
    Clare RM; Le Louarn M; Béchet C
    Appl Opt; 2011 Feb; 50(4):473-83. PubMed ID: 21283238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Oct; 35(29):5747-57. PubMed ID: 21127584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling low order aberrations in laser guide star adaptive optics systems.
    Clare RM; van Dam MA; Bouchez AH
    Opt Express; 2007 Apr; 15(8):4711-25. PubMed ID: 19532717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shack-Hartmann wavefront sensing with elongated sodium laser beacons: centroiding versus matched filtering.
    Gilles L; Ellerbroek B
    Appl Opt; 2006 Sep; 45(25):6568-76. PubMed ID: 16912797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive optics with four laser guide stars: correction of the cone effect in large telescopes.
    Viard E; Le LM; Hubin N
    Appl Opt; 2002 Jan; 41(1):11-20. PubMed ID: 11900425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for correcting tilt anisoplanatism in laser-guide-star-based multiconjugate adaptive optics.
    Ellerbroek BL; Rigaut F
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2539-47. PubMed ID: 11583271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laser guide star wavefront sensor bench demonstrator for TMT.
    Lardiere O; Conan R; Bradley C; Jackson K; Herriot G
    Opt Express; 2008 Apr; 16(8):5527-43. PubMed ID: 18542656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient implementation of the Shack-Hartmann centroid extraction for edge computing.
    Mocci J; Busato F; Bombieri N; Bonora S; Muradore R
    J Opt Soc Am A Opt Image Sci Vis; 2020 Oct; 37(10):1548-1556. PubMed ID: 33104604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring seeing with a Shack-Hartmann wave-front sensor during an active-optics experiment.
    Zhang Y; Yang D; Cui X
    Appl Opt; 2004 Feb; 43(4):729-34. PubMed ID: 14960062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation of truncation effects in elongated Shack-Hartmann laser guide star wavefront sensor images.
    Clare RM; Weddell SJ; Le Louarn M
    Appl Opt; 2020 Aug; 59(22):6431-6442. PubMed ID: 32749340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained matched filtering for extended dynamic range and improved noise rejection for Shack-Hartmann wavefront sensing.
    Gilles L; Ellerbroek BL
    Opt Lett; 2008 May; 33(10):1159-61. PubMed ID: 18483545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensated-beacon adaptive optics using least-squares phase reconstruction.
    Banet MT; Spencer MF
    Opt Express; 2020 Nov; 28(24):36902-36914. PubMed ID: 33379774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental assessment of the matched filter for laser guide star wavefront sensing.
    Conan R; Lardière O; Herriot G; Bradley C; Jackson K
    Appl Opt; 2009 Feb; 48(6):1198-211. PubMed ID: 23567582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of curvature-based and Shack-Hartmann-based adaptive optics for the Gemini telescope.
    Rigaut F; Ellerbroek BL; Northcott MJ
    Appl Opt; 1997 May; 36(13):2856-68. PubMed ID: 18253284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyramid and Shack-Hartmann hybrid wave-front sensor.
    Guthery CE; Hart M
    Opt Lett; 2021 Mar; 46(5):1045-1048. PubMed ID: 33649653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.