These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10935936)

  • 1. Optimization of ethanol production in Saccharomyces cerevisiae by metabolic engineering of the ammonium assimilation.
    Nissen TL; Kielland-Brandt MC; Nielsen J; Villadsen J
    Metab Eng; 2000 Jan; 2(1):69-77. PubMed ID: 10935936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production.
    Roca C; Nielsen J; Olsson L
    Appl Environ Microbiol; 2003 Aug; 69(8):4732-6. PubMed ID: 12902265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpressing GLT1 in gpd1Delta mutant to improve the production of ethanol of Saccharomyces cerevisiae.
    Kong QX; Cao LM; Zhang AL; Chen X
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1382-6. PubMed ID: 17021874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6.
    Papapetridis I; van Dijk M; Dobbe AP; Metz B; Pronk JT; van Maris AJ
    Microb Cell Fact; 2016 Apr; 15():67. PubMed ID: 27118055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing ethanol titer and yield in a gpd1Δ gpd2Δ strain by simultaneous overexpression of GLT1 and STL1 in Saccharomyces cerevisiae.
    Wang J; Liu W; Ding W; Zhang G; Liu J
    Biotechnol Lett; 2013 Nov; 35(11):1859-64. PubMed ID: 23801122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.
    Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J
    FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae.
    Avendaño A; Deluna A; Olivera H; Valenzuela L; Gonzalez A
    J Bacteriol; 1997 Sep; 179(17):5594-7. PubMed ID: 9287019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase.
    Henningsen BM; Hon S; Covalla SF; Sonu C; Argyros DA; Barrett TF; Wiswall E; Froehlich AC; Zelle RM
    Appl Environ Microbiol; 2015 Dec; 81(23):8108-17. PubMed ID: 26386051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Over-expressing GLT1 in a gpd2Delta mutant of Saccharomyces cerevisiae to improve ethanol production.
    Kong QX; Zhang AL; Cao LM; Chen X
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1361-6. PubMed ID: 17505823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved production of ethanol by deleting FPS1 and over-expressing GLT1 in Saccharomyces cerevisiae.
    Kong QX; Gu JG; Cao LM; Zhang AL; Chen X; Zhao XM
    Biotechnol Lett; 2006 Dec; 28(24):2033-8. PubMed ID: 17043906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance.
    Guo ZP; Zhang L; Ding ZY; Shi GY
    Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of deletion of glycerol-3-phosphate dehydrogenase and glutamate dehydrogenase genes on glycerol and ethanol metabolism in recombinant Saccharomyces cerevisiae.
    Kim JW; Chin YW; Park YC; Seo JH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):49-54. PubMed ID: 21909679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of GLT1 in fps1DeltagpdDelta mutant for optimum ethanol formation by Saccharomyces cerevisiae.
    Cao L; Zhang A; Kong Q; Xu X; Josine TL; Chen X
    Biomol Eng; 2007 Dec; 24(6):638-42. PubMed ID: 18032102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of Saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction.
    Ida Y; Hirasawa T; Furusawa C; Shimizu H
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4811-9. PubMed ID: 23435983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimizing anaerobic growth rate and fermentation kinetics in
    Papapetridis I; Goudriaan M; Vázquez Vitali M; de Keijzer NA; van den Broek M; van Maris AJA; Pronk JT
    Biotechnol Biofuels; 2018; 11():17. PubMed ID: 29416562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.