These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10936437)

  • 21. Expression of pancreatic alpha-amylase protein and messenger RNA in hilar primitive bile ducts and hepatocytes during human fetal liver organogenesis: an immunohistochemical and in situ hybridization study.
    Terada T; Kato M; Horie S; Endo K; Kitamura Y
    Liver; 1998 Oct; 18(5):313-9. PubMed ID: 9831359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological and immunohistochemical analysis of ductal plate malformation: correlation with fetal liver.
    Awasthi A; Das A; Srinivasan R; Joshi K
    Histopathology; 2004 Sep; 45(3):260-7. PubMed ID: 15330804
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microstructure and development of the normal and pathologic biliary tract in humans, including blood supply.
    Nakanuma Y; Hoso M; Sanzen T; Sasaki M
    Microsc Res Tech; 1997 Sep; 38(6):552-70. PubMed ID: 9330346
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of the human intrahepatic biliary system.
    Vijayan V; Tan CE
    Ann Acad Med Singap; 1999 Jan; 28(1):105-8. PubMed ID: 10374035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immunolocalization of OV-6, a putative progenitor cell marker in human fetal and diseased pediatric liver.
    Crosby HA; Hubscher SG; Joplin RE; Kelly DA; Strain AJ
    Hepatology; 1998 Oct; 28(4):980-5. PubMed ID: 9755234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Expression of matrix proteinases during human intrahepatic bile duct development. A possible role in biliary cell migration.
    Terada T; Okada Y; Nakanuma Y
    Am J Pathol; 1995 Nov; 147(5):1207-13. PubMed ID: 7485384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of human peribiliary capillary plexus: a lectin-histochemical and immunohistochemical study.
    Terada T; Nakanuma Y
    Hepatology; 1993 Sep; 18(3):529-36. PubMed ID: 8359795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of intrahepatic bile ducts in humans. Possible role of laminin.
    Shah KD; Gerber MA
    Arch Pathol Lab Med; 1990 Jun; 114(6):597-600. PubMed ID: 2189374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biliary epithelial expression of MUC1, MUC2, MUC3 and MUC5/6 apomucins during intrahepatic bile duct development and maturation. An immunohistochemical study.
    Sasaki M; Nakanuma Y; Terada T; Kim YS
    Am J Pathol; 1995 Sep; 147(3):574-9. PubMed ID: 7677170
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computer-generated three-dimensional morphology of the hepatic hilar bile ducts in biliary atresia.
    Vijayan V; El Tan C
    J Pediatr Surg; 2000 Aug; 35(8):1230-5. PubMed ID: 10945701
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphometrical and immunohistochemical study of intrahepatic bile ducts in biliary atresia.
    Yamaguti DC; Patrício FR
    Eur J Gastroenterol Hepatol; 2011 Sep; 23(9):759-65. PubMed ID: 21694599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphometric and immunohistochemical characterization of human liver regeneration.
    Rubin EM; Martin AA; Thung SN; Gerber MA
    Am J Pathol; 1995 Aug; 147(2):397-404. PubMed ID: 7639333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Van Gogh-like 2 is essential for the architectural patterning of the mammalian biliary tree.
    Raab M; Christodoulou E; Krishnankutty R; Gradinaru A; Walker AD; Olaizola P; Younger NT; Lyons AM; Jarman EJ; Gournopanos K; von Kriegsheim A; Waddell SH; Boulter L
    J Hepatol; 2024 Jul; 81(1):108-119. PubMed ID: 38460794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bile duct to portal space ratio and ductal plate remnants in liver disease of infants aged less than 1 year.
    Sergi C; Benstz J; Feist D; Nutzenadel W; Otto HF; Hofmann WJ
    Pathology; 2008 Apr; 40(3):260-7. PubMed ID: 18428045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of intrahepatic bile ducts in humans. Immunohistochemical study using monoclonal cytokeratin antibodies.
    Shah KD; Gerber MA
    Arch Pathol Lab Med; 1989 Oct; 113(10):1135-8. PubMed ID: 2478106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of tenascin, type IV collagen and laminin during human intrahepatic bile duct development and in intrahepatic cholangiocarcinoma.
    Terada T; Nakanuma Y
    Histopathology; 1994 Aug; 25(2):143-50. PubMed ID: 7527010
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional computer-assisted reconstruction of ductal plate in the rat embryo (Carnegie stages 19-23).
    Godlewski G; Gaubert J; Gaubert-Cristol R; Dauzat M; Aldréa F; Prudhomme M
    Surg Radiol Anat; 2004 Oct; 26(5):359-64. PubMed ID: 15257417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Expression of cytokeratin 19 during human liver organogenesis.
    Stosiek P; Kasper M; Karsten U
    Liver; 1990 Feb; 10(1):59-63. PubMed ID: 1689800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of the malformation of ductal plate of the liver in Meckel syndrome and review of other syndromes presenting with this anomaly.
    Sergi C; Adam S; Kahl P; Otto HF
    Pediatr Dev Pathol; 2000; 3(6):568-83. PubMed ID: 11000335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bile ductule formation in fetal, neonatal, and infant livers compared with extrahepatic biliary atresia.
    Cocjin J; Rosenthal P; Buslon V; Luk L; Barajas L; Geller SA; Ruebner B; French S
    Hepatology; 1996 Sep; 24(3):568-74. PubMed ID: 8781326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.