These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10936652)

  • 1. Low frequency voltage clamp: recording of voltage transients at constant average command voltage.
    Peters F; Gennerich A; Czesnik D; Schild D
    J Neurosci Methods; 2000 Jun; 99(1-2):129-36. PubMed ID: 10936652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP-independent responses of olfactory neurons in Xenopus laevis tadpoles and their projection onto olfactory bulb neurons.
    Manzini I; Rössler W; Schild D
    J Physiol; 2002 Dec; 545(2):475-84. PubMed ID: 12456827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp.
    Saint Mleux B; Moore LE
    J Neurophysiol; 2000 Mar; 83(3):1381-93. PubMed ID: 10712465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-clamp-controlled current-clamp recordings from neurons: an electrophysiological technique enabling the detection of fast potential changes at preset holding potentials.
    Sutor B; Grimm C; Polder HR
    Pflugers Arch; 2003 Apr; 446(1):133-41. PubMed ID: 12690472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3.
    Fadool DA; Tucker K; Phillips JJ; Simmen JA
    J Neurophysiol; 2000 Apr; 83(4):2332-48. PubMed ID: 10758137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of low EPSP attenuation in primary dendrites of mitral cells: modeling study.
    Popović M; Djurisić M; Zecević D
    Ann N Y Acad Sci; 2005 Jun; 1048():344-8. PubMed ID: 16154948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical properties of periglomerular cells in the frog olfactory bulb.
    Magherini PC; Bardoni R; Belluzzi O
    Arch Ital Biol; 1997 Mar; 135(2):195-203. PubMed ID: 9101029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory modulation of spontaneous subthreshold synaptic activity in olfactory bulb granule cells recorded in awake, head-fixed mice.
    Youngstrom IA; Strowbridge BW
    J Neurosci; 2015 Jun; 35(23):8758-67. PubMed ID: 26063910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding.
    Bao G; de Jong D; Alevra M; Schild D
    Eur J Neurosci; 2015 Dec; 42(11):2985-95. PubMed ID: 26452167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional heterogeneity of periglomerular cells in the rat olfactory bulb.
    Puopolo M; Belluzzi O
    Eur J Neurosci; 1998 Mar; 10(3):1073-83. PubMed ID: 9753175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional synapse formation between rat olfactory receptor neurons and olfactory bulb neurons in vitro.
    Kanaki K; Sato K; Kashiwayanagi M
    Neurosci Lett; 2000 May; 285(1):76-8. PubMed ID: 10788711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative voltage and current-clamp analysis of feedback and feedforward synaptic transmission in the striatal microcircuit in vitro.
    Gustafson N; Gireesh-Dharmaraj E; Czubayko U; Blackwell KT; Plenz D
    J Neurophysiol; 2006 Feb; 95(2):737-52. PubMed ID: 16236782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical properties of cells from human olfactory epithelium.
    Tamari K; Takeuchi H; Kobayashi M; Takeuchi K; Kurahashi T; Yamamoto T
    Auris Nasus Larynx; 2019 Oct; 46(5):734-741. PubMed ID: 30850172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A transient, RCK4-like K+ current in cultured Xenopus olfactory bulb neurons.
    Engel J; Rabba J; Schild D
    Pflugers Arch; 1996 Sep; 432(5):845-52. PubMed ID: 8772135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Odor-Induced Electrical and Calcium Signals from Olfactory Sensory Neurons In Situ.
    Grosmaitre X; Ma M
    Methods Mol Biol; 2018; 1820():147-155. PubMed ID: 29884944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Olfactory nerve stimulation-induced calcium signaling in the mitral cell distal dendritic tuft.
    Yuan Q; Knöpfel T
    J Neurophysiol; 2006 Apr; 95(4):2417-26. PubMed ID: 16319202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic conductances actively shape excitatory and inhibitory postsynaptic responses in olfactory bulb external tufted cells.
    Liu S; Shipley MT
    J Neurosci; 2008 Oct; 28(41):10311-22. PubMed ID: 18842890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dendritic sodium spikelets and low-threshold calcium spikes in turtle olfactory bulb granule cells.
    Pinato G; Midtgaard J
    J Neurophysiol; 2005 Mar; 93(3):1285-94. PubMed ID: 15483062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct excitation of mitral cells via activation of alpha1-noradrenergic receptors in rat olfactory bulb slices.
    Hayar A; Heyward PM; Heinbockel T; Shipley MT; Ennis M
    J Neurophysiol; 2001 Nov; 86(5):2173-82. PubMed ID: 11698509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthodromic synaptic activation of rat olfactory bulb mitral cells in isolated slices.
    Nickell WT; Shipley MT; Behbehani MM
    Brain Res Bull; 1996; 39(1):57-62. PubMed ID: 8846109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.