BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10936690)

  • 1. Stimulation of synaptosomal D-[(3)H]aspartate transport by substance P in rat brain.
    Healy J; Downes A; McBean GJ
    Neurosci Lett; 2000 Aug; 290(2):113-6. PubMed ID: 10936690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and pharmacological analysis of L-[35S]cystine transport into rat brain synaptosomes.
    Flynn J; McBean GJ
    Neurochem Int; 2000 May; 36(6):513-21. PubMed ID: 10762088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nontransportable inhibitors attenuate reversal of glutamate uptake in synaptosomes following a metabolic insult.
    Koch HP; Chamberlin AR; Bridges RJ
    Mol Pharmacol; 1999 Jun; 55(6):1044-8. PubMed ID: 10347246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the oestrous cycle on L-glutamate and L-aspartate transport in rat brain synaptosomes.
    Mitrovic AD; Maddison JE; Johnston GA
    Neurochem Int; 1999 Feb; 34(2):101-8. PubMed ID: 10213067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pre-incubation of synaptosomes with arachidonic acid potentiates inhibition of [3H]D-aspartate transport.
    Lundy DF; McBean GJ
    Eur J Pharmacol; 1995 Nov; 291(3):273-9. PubMed ID: 8719411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of [3H]L-glutamate uptake from L-glutamate-induced [3H]D-aspartate release by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid, two conformationally constrained aspartate and glutamate analogs.
    Funicello M; Conti P; De Amici M; De Micheli C; Mennini T; Gobbi M
    Mol Pharmacol; 2004 Sep; 66(3):522-9. PubMed ID: 15322243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into the role of calcium in the modulation of rat synaptosomal D-[3H]aspartate transport by docosahexaenoic acid.
    Berry CB; McBean GJ
    Brain Res; 2003 May; 973(1):107-14. PubMed ID: 12729959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes.
    Azbill RD; Mu X; Springer JE
    Brain Res; 2000 Jul; 871(2):175-80. PubMed ID: 10899284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of substrate and nonsubstrate inhibitors of the high-affinity, sodium-dependent glutamate transporters.
    Koch HP; Kavanaugh MP; Esslinger CS; Zerangue N; Humphrey JM; Amara SG; Chamberlin AR; Bridges RJ
    Mol Pharmacol; 1999 Dec; 56(6):1095-104. PubMed ID: 10570036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of synaptosomal [3H]glutamate uptake and [3H]glutamate binding to plasma membranes from brain of young rats by glutaric acid in vitro.
    Porciúncula LO; Dal-Pizzol A; Coitinho AS; Emanuelli T; Souza DO; Wajner M
    J Neurol Sci; 2000 Feb; 173(2):93-6. PubMed ID: 10675650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P2X7 receptor activation downmodulates Na(+)-dependent high-affinity GABA and glutamate transport into rat brain cortex synaptosomes.
    Barros-Barbosa AR; Lobo MG; Ferreirinha F; Correia-de-Sá P; Cordeiro JM
    Neuroscience; 2015 Oct; 306():74-90. PubMed ID: 26299340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the high-affinity uptake of D-[3H]aspartate in rate by L-alpha-aminoadipate and arachidonic acid.
    Lundy DF; McBean GJ
    J Neurol Sci; 1996 Aug; 139 Suppl():1-9. PubMed ID: 8899651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain.
    Ferkany J; Coyle JT
    J Neurosci Res; 1986; 16(3):491-503. PubMed ID: 2877096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1).
    Dowd LA; Coyle AJ; Rothstein JD; Pritchett DB; Robinson MB
    Mol Pharmacol; 1996 Mar; 49(3):465-73. PubMed ID: 8643086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Modulating effect of glutamate transporter inhibitors on accumulation and release of the neuromediator by the brain nerve terminals in rats].
    Borisova TA; Krysanova NV; Himmelreich NH
    Ukr Biokhim Zh (1999); 2005; 77(3):61-7. PubMed ID: 16566131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nicergoline enhances glutamate uptake via glutamate transporters in rat cortical synaptosomes.
    Nishida A; Iwata H; Kudo Y; Kobayashi T; Matsuoka Y; Kanai Y; Endou H
    Biol Pharm Bull; 2004 Jun; 27(6):817-20. PubMed ID: 15187425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of cysteate by synaptosomes isolated from rat brain: evidence that it utilizes the same transporter as aspartate, glutamate, and cysteine sulfinate.
    Wilson DF; Pastuszko A
    J Neurochem; 1986 Oct; 47(4):1091-7. PubMed ID: 2875128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspartate release from rat hippocampal synaptosomes.
    Bradford SE; Nadler JV
    Neuroscience; 2004; 128(4):751-65. PubMed ID: 15464283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the GLT-1 subtype of Na+-dependent glutamate transporter: pharmacological characterization and lack of regulation by protein kinase C.
    Tan J; Zelenaia O; Correale D; Rothstein JD; Robinson MB
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1600-10. PubMed ID: 10336558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pharmacological characterization of threo-3-methylglutamic acid with excitatory amino acid transporters in native and recombinant systems.
    Eliasof S; McIlvain HB; Petroski RE; Foster AC; Dunlop J
    J Neurochem; 2001 Apr; 77(2):550-7. PubMed ID: 11299317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.