BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10936766)

  • 1. Sarcoplasmic reticulum Ca(2+)-ATPase of sea cucumber smooth muscle: regulation by K(+) and ATP.
    Landeira-Fernandez AM; Galina A; Jennings P; Montero-Lomeli M; de Meis L
    Comp Biochem Physiol A Mol Integr Physiol; 2000 Jun; 126(2):263-74. PubMed ID: 10936766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic activity and heat production by the Ca(2+)-ATPase from sea cucumber (Ludwigothurea grisea) longitudinal smooth muscle: modulation by monovalent cations.
    Landeira-Fernandez AM; Galina A; de Meis L
    J Exp Biol; 2000 Dec; 203(Pt 23):3613-9. PubMed ID: 11060222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ca(2+ )transport by the sarcoplasmic reticulum Ca(2+)-ATPase in sea cucumber (Ludwigothurea grisea) muscle.
    Landeira-Fernandez A
    J Exp Biol; 2001 Mar; 204(Pt 5):909-21. PubMed ID: 11171414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sulfated polysaccharide from the sarcoplasmic reticulum of sea cucumber smooth muscle is an endogenous inhibitor of the Ca(2+)-ATPase.
    Landeira-Fernandez AM; Aiello KR; Aquino RS; Silva LC; Meis Ld; MourĂ£o PA
    Glycobiology; 2000 Aug; 10(8):773-9. PubMed ID: 10929003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratio of hydrolysis and synthesis of ATP by the sarcoplasmic reticulum ATPase in the absence of a Ca2+ concentration gradient.
    Scofano HM; de Meis L
    J Biol Chem; 1981 May; 256(9):4282-5. PubMed ID: 6111563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase.
    Fukushima Y; Yamada S; Nakao M
    J Biochem; 1984 Feb; 95(2):359-68. PubMed ID: 6325400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification, kinetic properties and intracellular localization of the (Ca(2+)-Mg2+)-ATPase from the intracellular stores of chicken cerebellum.
    Michelangeli F; Di Virgilio F; Villa A; Podini P; Meldolesi J; Pozzan T
    Biochem J; 1991 May; 275 ( Pt 3)(Pt 3):555-61. PubMed ID: 1828146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissection of the functional differences between sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 1 and 3 isoforms by steady-state and transient kinetic analyses.
    Dode L; Vilsen B; Van Baelen K; Wuytack F; Clausen JD; Andersen JP
    J Biol Chem; 2002 Nov; 277(47):45579-91. PubMed ID: 12207029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum.
    Jones LR
    Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of ATP synthesis by sarcoplasmic reticulum ATPase.
    de Meis L
    Ann N Y Acad Sci; 1982; 402():535-48. PubMed ID: 6220652
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional coupling between sarcoplasmic-reticulum-bound creatine kinase and Ca(2+)-ATPase.
    Korge P; Byrd SK; Campbell KB
    Eur J Biochem; 1993 May; 213(3):973-80. PubMed ID: 8504836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethanol has different effects on Ca(2+)-transport ATPases of muscle, brain and blood platelets.
    Mitidieri F; de Meis L
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):733-7. PubMed ID: 8554513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge translocation by the sarcoplasmic Ca ATPase after an ATP concentration jump.
    Hartung K; Fendler K
    J Protein Chem; 1989 Jun; 8(3):377-9. PubMed ID: 2528963
    [No Abstract]   [Full Text] [Related]  

  • 15. Control of heat produced during ATP hydrolysis by the sarcoplasmic reticulum Ca(2+)-ATPase in the absence of a Ca2+ gradient.
    de Meis L
    Biochem Biophys Res Commun; 1998 Feb; 243(2):598-600. PubMed ID: 9480854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of an aromatic dibromoisothiouronium derivative with the Ca(2+)-ATPase of skeletal muscle sarcoplasmic reticulum.
    Berman MC; Karlish SJ
    Biochemistry; 2003 Apr; 42(12):3556-66. PubMed ID: 12653560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP regulation of calcium transport in back-inhibited sarcoplasmic reticulum vesicles.
    de Meis L; Sorenson MM
    Biochim Biophys Acta; 1989 Sep; 984(3):373-8. PubMed ID: 2528377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of ATP synthesis catalyzed by the calcium pump of sarcoplasmic reticulum.
    Sande-Lemos MP; de Meis L
    J Biol Chem; 1988 Mar; 263(8):3795-8. PubMed ID: 2964443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+,Mg2+-ATPase of microsomal membranes from bovine aortic smooth muscle. Identification and characterization of an acid-stable phosphorylated intermediate of the Ca2+,Mg2+-ATPase.
    Sumida M; Okuda H; Hamada M
    J Biochem; 1984 Nov; 96(5):1365-74. PubMed ID: 6151948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle.
    Yamaguchi M; Nakajima R
    J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.