These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 1093749)
1. Changes in myocardial blood flow and S-T segment elevation following coronary artery occlusion in dogs. Smith HJ; Singh BN; Norris RM; John MB; Hurley PJ Circ Res; 1975 Jun; 36(6):697-705. PubMed ID: 1093749 [TBL] [Abstract][Full Text] [Related]
2. Effects of hypoxemia on the extent of myocardial necrosis after experimental coronary occlusion. Radvany P; Maroko PR; Braunwald E Am J Cardiol; 1975 Jun; 35(6):795-800. PubMed ID: 1130288 [TBL] [Abstract][Full Text] [Related]
3. The effects of hyaluronidase on coronary blood flow following coronary artery occlusion in the dog. Askenazi J; Hillis LD; Diaz PE; Davis MA; Braunwald E; Maroko PR Circ Res; 1977 Jun; 40(6):566-71. PubMed ID: 870237 [TBL] [Abstract][Full Text] [Related]
4. Relationship between epicardial ST-segment elevation and myocardial ischemic damage after experimental coronary artery occlusion in dogs. Heng MK; Singh BN; Norris RM; John MB; Elliot R J Clin Invest; 1976 Dec; 58(6):1317-26. PubMed ID: 993347 [TBL] [Abstract][Full Text] [Related]
5. Significance of S-T segment elevations in acute myocardial ischemia. Evaluation with intracoronary electrode technique. Hashimoto K; Corday E; Lang TW; Rubins S; Meerbaum S; Osher J; Farcot JC; Davidson RM Am J Cardiol; 1976 Mar; 37(4):493-500. PubMed ID: 1258786 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of precordial electrocardiographic mapping as a means of assessing changes in myocardial ischemic injury. Muller JE; Maroko PR; Braunwald E Circulation; 1975 Jul; 52(1):16-27. PubMed ID: 1132119 [TBL] [Abstract][Full Text] [Related]
7. The effect of hypoglycemia on myocardial ischemic injury during acute experimental coronary artery occlusion. Libby P; Maroko PR; Braunwald E Circulation; 1975 Apr; 51(4):621-6. PubMed ID: 1116252 [TBL] [Abstract][Full Text] [Related]
8. Temporal relation of epicardial electrographic, contractile and biochemical changes after acute coronary occlusion and reperfusion. Bodenheimer MM; Banka VS; Levites R; Helfant RH Am J Cardiol; 1976 Mar; 37(4):486-92. PubMed ID: 1258785 [TBL] [Abstract][Full Text] [Related]
9. Effects of oxyfedrin: a beta-adrenoreceptor stimulant, on infarct size following acute coronary artery ligation. Timogiannakis G; Petropoulos D; Toutouzas P; Courouklis C; Avgoustakis D Cardiovasc Res; 1978 Jun; 12(6):341-7. PubMed ID: 698986 [TBL] [Abstract][Full Text] [Related]
10. Effects of ortho-iodo sodium benzoate on acute myocardial ischemia, hemodynamic function, and infarct size after coronary artery occlusion in dogs. Rude RE; Tumas J; Gunst M; Kloner RA; DeBoer LW; Maroko PR Am J Cardiol; 1983 May; 51(8):1422-7. PubMed ID: 6846170 [TBL] [Abstract][Full Text] [Related]
11. Effect of inhibition of lipolysis on infarct size after experimental coronary artery occlusion. Kjekshus JK; Mjos OD J Clin Invest; 1973 Jul; 52(7):1770-8. PubMed ID: 4718963 [TBL] [Abstract][Full Text] [Related]
12. Relationship of functional recovery to scar contraction after myocardial infarction in the canine left ventricle. Choong CY; Gibbons EF; Hogan RD; Franklin TD; Nolting M; Mann DL; Weyman AE Am Heart J; 1989 Apr; 117(4):819-29. PubMed ID: 2929398 [TBL] [Abstract][Full Text] [Related]
13. Reduction by cobra venom factor of myocardial necrosis after coronary artery occlusion. Maroko PR; Carpenter CB; Chiariello M; Fishbein MC; Radvany P; Knostman JD; Hale SL J Clin Invest; 1978 Mar; 61(3):661-70. PubMed ID: 641147 [TBL] [Abstract][Full Text] [Related]
15. Regional myocardial blood flow during acute myocardial infarction in the conscious dog. Bishop SP; White FC; Bloor CM Circ Res; 1976 May; 38(5):429-38. PubMed ID: 1269082 [TBL] [Abstract][Full Text] [Related]
16. [Improvement of flow properties using Arwin in acute experimental infarct]. Neugebauer G Z Kardiol; 1976 Nov; 65(11):1010-21. PubMed ID: 1007385 [TBL] [Abstract][Full Text] [Related]
17. Effects of time on volume and distribution of coronary collateral flow. Marcus ML; Kerber RE; Ehrhardt J; Abboud FM Am J Physiol; 1976 Feb; 230(2):279-85. PubMed ID: 1259004 [TBL] [Abstract][Full Text] [Related]
18. Progressive epicardial coronary blood flow reduction fails to produce ST-segment depression at normal heart rates. de Chantal M; Diodati JG; Nasmith JB; Amyot R; LeBlanc AR; Schampaert E; Pharand C Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2889-96. PubMed ID: 16905602 [TBL] [Abstract][Full Text] [Related]
19. The effects of isoprenaline on epicardial ST-segment elevation, lactate production, and myocardial blood flow following coronary artery ligation. Norris RM; Smith HJ; Singh BN; Nisbet H; John MB; Hurley PJ Cardiovasc Res; 1975 Nov; 9(6):770-8. PubMed ID: 1203916 [TBL] [Abstract][Full Text] [Related]
20. Studies on the relationship between ST-segment elevations and extent of infarction following coronary artery occlusion in dogs. Daniell HB Res Commun Chem Pathol Pharmacol; 1979 Feb; 23(2):333-40. PubMed ID: 461957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]