BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 10937872)

  • 21. Structural elements required for deamidation of RhoA by cytotoxic necrotizing factor 1.
    Buetow L; Ghosh P
    Biochemistry; 2003 Nov; 42(44):12784-91. PubMed ID: 14596592
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rho proteins: targets for bacterial toxins.
    Aktories K
    Trends Microbiol; 1997 Jul; 5(7):282-8. PubMed ID: 9234511
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytotoxic necrotizing factor 1 hinders skeletal muscle differentiation in vitro by perturbing the activation/deactivation balance of Rho GTPases.
    Travaglione S; Messina G; Fabbri A; Falzano L; Giammarioli AM; Grossi M; Rufini S; Fiorentini C
    Cell Death Differ; 2005 Jan; 12(1):78-86. PubMed ID: 15514676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Difference in protein substrate specificity between hemorrhagic toxin and lethal toxin from Clostridium sordellii.
    Genth H; Hofmann F; Selzer J; Rex G; Aktories K; Just I
    Biochem Biophys Res Commun; 1996 Dec; 229(2):370-4. PubMed ID: 8954906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Bordetella dermonecrotizing toxin and Escherichia coli cytotoxic necrotizing factors: bacterial toxins activating Rho family GTPases].
    Horiguchi Y
    Tanpakushitsu Kakusan Koso; 2001 Mar; 46(4 Suppl):491-6. PubMed ID: 11268651
    [No Abstract]   [Full Text] [Related]  

  • 26. YopE of Yersinia, a GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells.
    Andor A; Trülzsch K; Essler M; Roggenkamp A; Wiedemann A; Heesemann J; Aepfelbacher M
    Cell Microbiol; 2001 May; 3(5):301-10. PubMed ID: 11298653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Large clostridial cytotoxins.
    Just I; Gerhard R
    Rev Physiol Biochem Pharmacol; 2004; 152():23-47. PubMed ID: 15449191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Rac GTPase-activating bacterial protein toxin CNF1 induces analgesia up-regulating mu-opioid receptors.
    Pavone F; Luvisetto S; Marinelli S; Straface E; Fabbri A; Falzano L; Fiorentini C; Malorni W
    Pain; 2009 Sep; 145(1-2):219-29. PubMed ID: 19608345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An Escherichia coli cytotoxin increases superoxide anion generation via rac in epithelial cells.
    Falzano L; Rivabene R; Santini MT; Fabbri A; Fiorentini C
    Biochem Biophys Res Commun; 2001 May; 283(5):1026-30. PubMed ID: 11355875
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ezrin/radixin/moesin proteins are high affinity targets for ADP-ribosylation by Pseudomonas aeruginosa ExoS.
    Maresso AW; Baldwin MR; Barbieri JT
    J Biol Chem; 2004 Sep; 279(37):38402-8. PubMed ID: 15252013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of MMP-2 by Clostridium difficile toxin B in bovine smooth muscle cells.
    Koike T; Kuzuya M; Asai T; Kanda S; Cheng XW; Watanabe K; Banno Y; Nozawa Y; Iguchi A
    Biochem Biophys Res Commun; 2000 Oct; 277(1):43-6. PubMed ID: 11027636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase-activating protein for Rho-GTPases.
    Chopra P; Koduri H; Singh R; Koul A; Ghildiyal M; Sharma K; Tyagi AK; Singh Y
    FEBS Lett; 2004 Jul; 571(1-3):212-6. PubMed ID: 15280044
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytotoxic necrotizing factor type 2 produced by pathogenic Escherichia coli deamidates a gln residue in the conserved G-3 domain of the rho family and preferentially inhibits the GTPase activity of RhoA and rac1.
    Sugai M; Hatazaki K; Mogami A; Ohta H; Pérès SY; Hérault F; Horiguchi Y; Masuda M; Ueno Y; Komatsuzawa H; Suginaka H; Oswald E
    Infect Immun; 1999 Dec; 67(12):6550-7. PubMed ID: 10569774
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancement of learning and memory after activation of cerebral Rho GTPases.
    Diana G; Valentini G; Travaglione S; Falzano L; Pieri M; Zona C; Meschini S; Fabbri A; Fiorentini C
    Proc Natl Acad Sci U S A; 2007 Jan; 104(2):636-41. PubMed ID: 17202256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytosolic delivery and characterization of the TcdB glucosylating domain by using a heterologous protein fusion.
    Spyres LM; Qa'Dan M; Meader A; Tomasek JJ; Howard EW; Ballard JD
    Infect Immun; 2001 Jan; 69(1):599-601. PubMed ID: 11119561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How to analyze bacterial toxins targeting Rho GTPases.
    Bielek H; Schmidt G
    Methods Mol Biol; 2012; 827():59-75. PubMed ID: 22144267
    [TBL] [Abstract][Full Text] [Related]  

  • 38. EhRho1, a RhoA-like GTPase of Entamoeba histolytica, is modified by clostridial glucosylating cytotoxins.
    Majumder S; Schmidt G; Lohia A; Aktories K
    Appl Environ Microbiol; 2006 Dec; 72(12):7842-8. PubMed ID: 17056697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB.
    Murga C; Zohar M; Teramoto H; Gutkind JS
    Oncogene; 2002 Jan; 21(2):207-16. PubMed ID: 11803464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion.
    Fu Y; Galán JE
    Nature; 1999 Sep; 401(6750):293-7. PubMed ID: 10499590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.