BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10937936)

  • 1. Toward predicting metabolic fluxes in metabolically engineered strains.
    Liao JC; Oh MK
    Metab Eng; 1999 Jul; 1(3):214-23. PubMed ID: 10937936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flux calculation using metabolic control constraints.
    Liao JC; Delgado J
    Biotechnol Prog; 1998 Jul; 14(4):554-60. PubMed ID: 9694675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.
    Massaiu I; Pasotti L; Sonnenschein N; Rama E; Cavaletti M; Magni P; Calvio C; Herrgård MJ
    Microb Cell Fact; 2019 Jan; 18(1):3. PubMed ID: 30626384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic models of metabolism that consider alternative steady-state solutions of intracellular fluxes and concentrations.
    Hameri T; Fengos G; Ataman M; Miskovic L; Hatzimanikatis V
    Metab Eng; 2019 Mar; 52():29-41. PubMed ID: 30455161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of computational modeling in metabolic engineering of yeast.
    Kerkhoven EJ; Lahtvee PJ; Nielsen J
    FEMS Yeast Res; 2015 Feb; 15(1):1-13. PubMed ID: 25156867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic design: how to engineer a living cell to desired metabolite concentrations and fluxes.
    Kholodenko BN; Cascante M; Hoek JB; Westerhoff HV; Schwaber J
    Biotechnol Bioeng; 1998 Jul; 59(2):239-47. PubMed ID: 10099334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants.
    Choi HS; Kim TY; Lee DY; Lee SY
    J Biotechnol; 2007 May; 129(4):696-705. PubMed ID: 17408794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data.
    Heijnen JJ; van Gulik WM; Shimizu H; Stephanopoulos G
    Metab Eng; 2004 Oct; 6(4):391-400. PubMed ID: 15491867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimality criteria for the prediction of metabolic fluxes in yeast mutants.
    Snitkin ES; Segrè D
    Genome Inform; 2008; 20():123-34. PubMed ID: 19425128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flux balance analysis as an alternative method to estimate fluxes without labeling.
    Grafahrend-Belau E; Junker A; Schreiber F; Junker BH
    Methods Mol Biol; 2014; 1090():281-99. PubMed ID: 24222422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid model of anaerobic E. coli GJT001: combination of elementary flux modes and cybernetic variables.
    Kim JI; Varner JD; Ramkrishna D
    Biotechnol Prog; 2008; 24(5):993-1006. PubMed ID: 19194908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks.
    Holzhütter HG
    Eur J Biochem; 2004 Jul; 271(14):2905-22. PubMed ID: 15233787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic metabolic flux analysis--tools for probing transient states of metabolic networks.
    Antoniewicz MR
    Curr Opin Biotechnol; 2013 Dec; 24(6):973-8. PubMed ID: 23611566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards industrial application of quasi real-time metabolic flux analysis for mammalian cell culture.
    Goudar C; Biener R; Zhang C; Michaels J; Piret J; Konstantinov K
    Adv Biochem Eng Biotechnol; 2006; 101():99-118. PubMed ID: 16989259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New experimental and theoretical tools for metabolic engineering of micro-organisms.
    Heijnen JJ
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(3a):11-30. PubMed ID: 15954559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic optimization of metabolic networks coupled with gene expression.
    Waldherr S; Oyarzún DA; Bockmayr A
    J Theor Biol; 2015 Jan; 365():469-85. PubMed ID: 25451533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flux duality in nonlinear GMA systems: implications for metabolic engineering.
    Marin-Sanguino A; Mendoza ER; Voit EO
    J Biotechnol; 2010 Sep; 149(3):166-72. PubMed ID: 20015458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory of steady-state control in complex metabolic networks.
    Bohnensack R
    Biomed Biochim Acta; 1985; 44(11-12):1567-78. PubMed ID: 4091833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.