BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 10937936)

  • 41. Predicting metabolic fluxes using gene expression differences as constraints.
    van Berlo RJ; de Ridder D; Daran JM; Daran-Lapujade PA; Teusink B; Reinders MJ
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):206-16. PubMed ID: 21071808
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modeling and simulation: tools for metabolic engineering.
    Wiechert W
    J Biotechnol; 2002 Mar; 94(1):37-63. PubMed ID: 11792451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Application of metabolic flux analysis in metabolic engineering.
    Lee SY; Park JM; Kim TY
    Methods Enzymol; 2011; 498():67-93. PubMed ID: 21601674
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid simulation and analysis of isotopomer distributions using constraints based on enzyme mechanisms: an example from HT29 cancer cells.
    Selivanov VA; Meshalkina LE; Solovjeva ON; Kuchel PW; Ramos-Montoya A; Kochetov GA; Lee PW; Cascante M
    Bioinformatics; 2005 Sep; 21(17):3558-64. PubMed ID: 16002431
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantifying Methane and Methanol Metabolism of "
    He L; Fu Y; Lidstrom ME
    mSystems; 2019 Dec; 4(6):. PubMed ID: 31822604
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Towards a quantitative prediction of the fluxome from the proteome.
    Rossell S; Solem C; Jensen PR; Heijnen JJ
    Metab Eng; 2011 May; 13(3):253-62. PubMed ID: 21296181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic metabolic flux analysis using a convex analysis approach: Application to hybridoma cell cultures in perfusion.
    Fernandes de Sousa S; Bastin G; Jolicoeur M; Vande Wouwer A
    Biotechnol Bioeng; 2016 May; 113(5):1102-12. PubMed ID: 26551676
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pathways and fluxes: exploring the plant metabolic network.
    Kruger NJ; Ratcliffe RG
    J Exp Bot; 2012 Mar; 63(6):2243-6. PubMed ID: 22407647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Theory of metabolism regulation: a complete system of equations for regulation coefficients].
    Kholodenko BN; Erlikh LI
    Biofizika; 1989; 34(5):802-7. PubMed ID: 2611277
    [TBL] [Abstract][Full Text] [Related]  

  • 52. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems.
    Smith RW; van Rosmalen RP; Martins Dos Santos VAP; Fleck C
    BMC Syst Biol; 2018 Jun; 12(1):72. PubMed ID: 29914475
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Steady-state analysis of metabolic pathways: comparing the double modulation method and the lin-log approach.
    Link H; Weuster-Botz D
    Metab Eng; 2007; 9(5-6):433-41. PubMed ID: 17889583
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.
    Dauner M; Bailey JE; Sauer U
    Biotechnol Bioeng; 2001 Sep; 76(2):144-56. PubMed ID: 11505384
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ScalaFlux: A scalable approach to quantify fluxes in metabolic subnetworks.
    Millard P; Schmitt U; Kiefer P; Vorholt JA; Heux S; Portais JC
    PLoS Comput Biol; 2020 Apr; 16(4):e1007799. PubMed ID: 32287281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two-Scale
    Ando D; Garcia Martin H
    Methods Mol Biol; 2018; 1671():333-352. PubMed ID: 29170969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.
    Gupta A; Reizman IM; Reisch CR; Prather KL
    Nat Biotechnol; 2017 Mar; 35(3):273-279. PubMed ID: 28191902
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Software applications toward quantitative metabolic flux analysis and modeling.
    Dandekar T; Fieselmann A; Majeed S; Ahmed Z
    Brief Bioinform; 2014 Jan; 15(1):91-107. PubMed ID: 23142828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational prediction of essential metabolic genes using constraint-based approaches.
    Basler G
    Methods Mol Biol; 2015; 1279():183-204. PubMed ID: 25636620
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.