These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10937936)

  • 61. Software applications toward quantitative metabolic flux analysis and modeling.
    Dandekar T; Fieselmann A; Majeed S; Ahmed Z
    Brief Bioinform; 2014 Jan; 15(1):91-107. PubMed ID: 23142828
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Model-based metabolism design: constraints for kinetic and stoichiometric models.
    Stalidzans E; Seiman A; Peebo K; Komasilovs V; Pentjuss A
    Biochem Soc Trans; 2018 Apr; 46(2):261-267. PubMed ID: 29472367
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computational prediction of essential metabolic genes using constraint-based approaches.
    Basler G
    Methods Mol Biol; 2015; 1279():183-204. PubMed ID: 25636620
    [TBL] [Abstract][Full Text] [Related]  

  • 64. In vivo kinetics of primary metabolism in Saccharomyces cerevisiae studied through prolonged chemostat cultivation.
    Wu L; Mashego MR; Proell AM; Vinke JL; Ras C; van Dam J; van Winden WA; van Gulik WM; Heijnen JJ
    Metab Eng; 2006 Mar; 8(2):160-71. PubMed ID: 16233984
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterizability of metabolic pathway systems from time series data.
    Voit EO
    Math Biosci; 2013 Dec; 246(2):315-25. PubMed ID: 23391489
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration.
    Flint HJ; Tateson RW; Barthelmess IB; Porteous DJ; Donachie WD; Kacser H
    Biochem J; 1981 Nov; 200(2):231-46. PubMed ID: 6462136
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Estimation of metabolic fluxes, expression levels and metabolite dynamics of a secondary metabolic pathway in potato using label pulse-feeding experiments combined with kinetic network modelling and simulation.
    Heinzle E; Matsuda F; Miyagawa H; Wakasa K; Nishioka T
    Plant J; 2007 Apr; 50(1):176-87. PubMed ID: 17355439
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.
    Noor E; Flamholz A; Bar-Even A; Davidi D; Milo R; Liebermeister W
    PLoS Comput Biol; 2016 Nov; 12(11):e1005167. PubMed ID: 27812109
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Software for dynamic analysis of tracer-based metabolomic data: estimation of metabolic fluxes and their statistical analysis.
    Selivanov VA; Marin S; Lee PW; Cascante M
    Bioinformatics; 2006 Nov; 22(22):2806-12. PubMed ID: 17000750
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Consecutive reaction kinetics involving distributed fraction of methanogens in fluidized-bed bioreactors.
    Wu CS; Huang JS; Yan JL; Jih CG
    Biotechnol Bioeng; 1998 Feb; 57(3):367-79. PubMed ID: 10099213
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metabolic control analysis using transient metabolite concentrations. Determination of metabolite concentration control coefficients.
    Delgado J; Liao JC
    Biochem J; 1992 Aug; 285 ( Pt 3)(Pt 3):965-72. PubMed ID: 1497632
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A new framework for the estimation of control parameters in metabolic pathways using lin-log kinetics.
    Wu L; Wang W; van Winden WA; van Gulik WM; Heijnen JJ
    Eur J Biochem; 2004 Aug; 271(16):3348-59. PubMed ID: 15291812
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetically accessible yield (KAY) for redirection of metabolism to produce exo-metabolites.
    Lafontaine Rivera JG; Theisen MK; Chen PW; Liao JC
    Metab Eng; 2017 May; 41():144-151. PubMed ID: 28389394
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Thermodynamic constraints for biochemical networks.
    Beard DA; Babson E; Curtis E; Qian H
    J Theor Biol; 2004 Jun; 228(3):327-33. PubMed ID: 15135031
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.
    Kitayama T; Kinoshita A; Sugimoto M; Nakayama Y; Tomita M
    Theor Biol Med Model; 2006 Jul; 3():24. PubMed ID: 16846504
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Optimization-driven identification of genetic perturbations accelerates the convergence of model parameters in ensemble modeling of metabolic networks.
    Zomorrodi AR; Lafontaine Rivera JG; Liao JC; Maranas CD
    Biotechnol J; 2013 Sep; 8(9):1090-104. PubMed ID: 23450699
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Metabolic fluxes and metabolic engineering.
    Stephanopoulos G
    Metab Eng; 1999 Jan; 1(1):1-11. PubMed ID: 10935750
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.
    Liu Y; Li J; Du G; Chen J; Liu L
    Biotechnol Adv; 2017; 35(1):20-30. PubMed ID: 27867004
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Shrinking the metabolic solution space using experimental datasets.
    Reed JL
    PLoS Comput Biol; 2012; 8(8):e1002662. PubMed ID: 22956899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.