BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 10938121)

  • 1. Cell cycle-dependent binding of yeast heat shock factor to nucleosomes.
    Venturi CB; Erkine AM; Gross DS
    Mol Cell Biol; 2000 Sep; 20(17):6435-48. PubMed ID: 10938121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that partial unwrapping of DNA from nucleosomes facilitates the binding of heat shock factor following DNA replication in yeast.
    Geraghty DS; Sucic HB; Chen J; Pederson DS
    J Biol Chem; 1998 Aug; 273(32):20463-72. PubMed ID: 9685401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene.
    Gross DS; Adams CC; Lee S; Stentz B
    EMBO J; 1993 Oct; 12(10):3931-45. PubMed ID: 8404861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae.
    Pederson DS; Fidrych T
    Mol Cell Biol; 1994 Jan; 14(1):189-99. PubMed ID: 8264586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains.
    Taylor IC; Workman JL; Schuetz TJ; Kingston RE
    Genes Dev; 1991 Jul; 5(7):1285-98. PubMed ID: 2065977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and epigenetic determinants establish a continuum of Hsf1 occupancy and activity across the yeast genome.
    Pincus D; Anandhakumar J; Thiru P; Guertin MJ; Erkine AM; Gross DS
    Mol Biol Cell; 2018 Dec; 29(26):3168-3182. PubMed ID: 30332327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different requirements of the SWI/SNF complex for robust nucleosome displacement at promoters of heat shock factor and Msn2- and Msn4-regulated heat shock genes.
    Erkina TY; Tschetter PA; Erkine AM
    Mol Cell Biol; 2008 Feb; 28(4):1207-17. PubMed ID: 18070923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro.
    Erkine AM; Magrogan SF; Sekinger EA; Gross DS
    Mol Cell Biol; 1999 Mar; 19(3):1627-39. PubMed ID: 10022851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription.
    Erkine AM; Adams CC; Diken T; Gross DS
    Mol Cell Biol; 1996 Dec; 16(12):7004-17. PubMed ID: 8943356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic protein-DNA architecture of a yeast heat shock promoter.
    Giardina C; Lis JT
    Mol Cell Biol; 1995 May; 15(5):2737-44. PubMed ID: 7739554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of Gal4p and bicoid to nucleosomal sites in yeast in the absence of replication.
    Balasubramanian B; Morse RH
    Mol Cell Biol; 1999 Apr; 19(4):2977-85. PubMed ID: 10082565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between heat shock transcription factors (HSFs) and divergent binding sequences: binding specificities of yeast HSFs and human HSF1.
    Sakurai H; Takemori Y
    J Biol Chem; 2007 May; 282(18):13334-41. PubMed ID: 17347150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heat stress on yeast heat shock factor-promoter binding in vivo.
    Li N; Zhang LM; Zhang KQ; Deng JS; Prändl R; Schöffl F
    Acta Biochim Biophys Sin (Shanghai); 2006 May; 38(5):356-62. PubMed ID: 16680377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat shock transcription factor (Hsf)-4b recruits Brg1 during the G1 phase of the cell cycle and regulates the expression of heat shock proteins.
    Tu N; Hu Y; Mivechi NF
    J Cell Biochem; 2006 Aug; 98(6):1528-42. PubMed ID: 16552721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation of a stress response: human heat shock transcription factors functionally substitute for yeast HSF.
    Liu XD; Liu PC; Santoro N; Thiele DJ
    EMBO J; 1997 Nov; 16(21):6466-77. PubMed ID: 9351828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different mechanisms are involved in the transcriptional activation by yeast heat shock transcription factor through two different types of heat shock elements.
    Hashikawa N; Yamamoto N; Sakurai H
    J Biol Chem; 2007 Apr; 282(14):10333-40. PubMed ID: 17289668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel non-conventional heat shock element regulates expression of MDJ1 encoding a DnaJ homolog in Saccharomyces cerevisiae.
    Tachibana T; Astumi S; Shioda R; Ueno M; Uritani M; Ushimaru T
    J Biol Chem; 2002 Jun; 277(25):22140-6. PubMed ID: 11940587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple protein-DNA interactions over the yeast HSC82 heat shock gene promoter.
    Erkine AM; Adams CC; Gao M; Gross DS
    Nucleic Acids Res; 1995 May; 23(10):1822-9. PubMed ID: 7784189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.