These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 10938121)

  • 21. Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element.
    McDaniel D; Caplan AJ; Lee MS; Adams CC; Fishel BR; Gross DS; Garrard WT
    Mol Cell Biol; 1989 Nov; 9(11):4789-98. PubMed ID: 2689867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Remodeling of yeast CUP1 chromatin involves activator-dependent repositioning of nucleosomes over the entire gene and flanking sequences.
    Shen CH; Leblanc BP; Alfieri JA; Clark DJ
    Mol Cell Biol; 2001 Jan; 21(2):534-47. PubMed ID: 11134341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ssn6-Tup1 regulates RNR3 by positioning nucleosomes and affecting the chromatin structure at the upstream repression sequence.
    Li B; Reese JC
    J Biol Chem; 2001 Sep; 276(36):33788-97. PubMed ID: 11448965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements.
    Gross DS; English KE; Collins KW; Lee SW
    J Mol Biol; 1990 Dec; 216(3):611-31. PubMed ID: 2175361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro.
    Wall G; Varga-Weisz PD; Sandaltzopoulos R; Becker PB
    EMBO J; 1995 Apr; 14(8):1727-36. PubMed ID: 7737124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor.
    Tsukiyama T; Becker PB; Wu C
    Nature; 1994 Feb; 367(6463):525-32. PubMed ID: 8107823
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor.
    Hahn JS; Neef DW; Thiele DJ
    Mol Microbiol; 2006 Apr; 60(1):240-51. PubMed ID: 16556235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential recognition of heat shock elements by members of the heat shock transcription factor family.
    Yamamoto N; Takemori Y; Sakurai M; Sugiyama K; Sakurai H
    FEBS J; 2009 Apr; 276(7):1962-74. PubMed ID: 19250318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress.
    Morano KA; Santoro N; Koch KA; Thiele DJ
    Mol Cell Biol; 1999 Jan; 19(1):402-11. PubMed ID: 9858564
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin landscape dictates HSF binding to target DNA elements.
    Guertin MJ; Lis JT
    PLoS Genet; 2010 Sep; 6(9):e1001114. PubMed ID: 20844575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silenced chromatin is permissive to activator binding and PIC recruitment.
    Sekinger EA; Gross DS
    Cell; 2001 May; 105(3):403-14. PubMed ID: 11348596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcription factor-dependent chromatin remodeling at heat shock and copper-responsive promoters in Chlamydomonas reinhardtii.
    Strenkert D; Schmollinger S; Sommer F; Schulz-Raffelt M; Schroda M
    Plant Cell; 2011 Jun; 23(6):2285-301. PubMed ID: 21705643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assembly of MMTV promoter minichromosomes with positioned nucleosomes precludes NF1 access but not restriction enzyme cleavage.
    Venditti P; Di Croce L; Kauer M; Blank T; Becker PB; Beato M
    Nucleic Acids Res; 1998 Aug; 26(16):3657-66. PubMed ID: 9685480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nucleosome disruption by transcription factor binding in yeast.
    Morse RH
    Science; 1993 Dec; 262(5139):1563-6. PubMed ID: 8248805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heat shock-regulated transcription in vitro from a reconstituted chromatin template.
    Becker PB; Rabindran SK; Wu C
    Proc Natl Acad Sci U S A; 1991 May; 88(10):4109-13. PubMed ID: 2034656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of heat shock transcription factor in yeast is not influenced by the levels of expression of heat shock proteins.
    Hjorth-Sørensen B; Hoffmann ER; Lissin NM; Sewell AK; Jakobsen BK
    Mol Microbiol; 2001 Feb; 39(4):914-23. PubMed ID: 11251812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The architecture of the heat-inducible Drosophila hsp27 promoter in nuclei.
    Quivy JP; Becker PB
    J Mol Biol; 1996 Feb; 256(2):249-63. PubMed ID: 8594194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.