These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 10938304)
1. Postsynaptic receptor occupancy during evoked transmission at striatal GABAergic synapses in vitro. Rumpel E; Behrends JC J Neurophysiol; 2000 Aug; 84(2):771-9. PubMed ID: 10938304 [TBL] [Abstract][Full Text] [Related]
2. Unitary, quantal and miniature GABA-activated synaptic chloride currents in cultured neurons from the rat superior colliculus. Kraszewski K; Grantyn R Neuroscience; 1992; 47(3):555-70. PubMed ID: 1374855 [TBL] [Abstract][Full Text] [Related]
3. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. Segal M; Barker JL J Neurophysiol; 1984 Sep; 52(3):469-87. PubMed ID: 6148383 [TBL] [Abstract][Full Text] [Related]
4. Cell surface domain specific postsynaptic currents evoked by identified GABAergic neurones in rat hippocampus in vitro. Maccaferri G; Roberts JD; Szucs P; Cottingham CA; Somogyi P J Physiol; 2000 Apr; 524 Pt 1(Pt 1):91-116. PubMed ID: 10747186 [TBL] [Abstract][Full Text] [Related]
5. Quantal analysis of inhibitory synaptic transmission in the dentate gyrus of rat hippocampal slices: a patch-clamp study. Edwards FA; Konnerth A; Sakmann B J Physiol; 1990 Nov; 430():213-49. PubMed ID: 1707966 [TBL] [Abstract][Full Text] [Related]
6. Pre- and postsynaptic contribution of GABAC receptors to GABAergic synaptic transmission in rat collicular slices and cultures. Kirischuk S; Akyeli J; Iosub R; Grantyn R Eur J Neurosci; 2003 Aug; 18(4):752-8. PubMed ID: 12925001 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. Smith AJ; Owens S; Forsythe ID J Physiol; 2000 Dec; 529 Pt 3(Pt 3):681-98. PubMed ID: 11118498 [TBL] [Abstract][Full Text] [Related]
9. Presynaptic source of quantal size variability at GABAergic synapses in rat hippocampal neurons in culture. Barberis A; Petrini EM; Cherubini E Eur J Neurosci; 2004 Oct; 20(7):1803-10. PubMed ID: 15380001 [TBL] [Abstract][Full Text] [Related]
10. Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons. Cohen AS; Lin DD; Coulter DA J Neurophysiol; 2000 Nov; 84(5):2465-76. PubMed ID: 11067989 [TBL] [Abstract][Full Text] [Related]
11. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract. Grabauskas G; Bradley RM J Neurophysiol; 2003 Jan; 89(1):199-211. PubMed ID: 12522172 [TBL] [Abstract][Full Text] [Related]
12. Changes in quantal size distributions upon experimental variations in the probability of release at striatal inhibitory synapses. Behrends JC; ten Bruggencate G J Neurophysiol; 1998 Jun; 79(6):2999-3011. PubMed ID: 9636103 [TBL] [Abstract][Full Text] [Related]
13. GABA(C) rho(1) subunits form functional receptors but not functional synapses in hippocampal neurons. Cheng Q; Burkat PM; Kulli JC; Yang J J Neurophysiol; 2001 Nov; 86(5):2605-15. PubMed ID: 11698546 [TBL] [Abstract][Full Text] [Related]
14. Modulation of GABAA receptor-mediated IPSCs by neuroactive steroids in a rat hypothalamo-hypophyseal coculture model. Poisbeau P; Feltz P; Schlichter R J Physiol; 1997 Apr; 500 ( Pt 2)(Pt 2):475-85. PubMed ID: 9147331 [TBL] [Abstract][Full Text] [Related]
15. Large amplitude variability of GABAergic IPSCs in melanotropes from Xenopus laevis: evidence that quantal size differs between synapses. Borst JG; Lodder JC; Kits KS J Neurophysiol; 1994 Feb; 71(2):639-55. PubMed ID: 8176432 [TBL] [Abstract][Full Text] [Related]
16. Repetitive activation of postsynaptic GABA(A )receptors by rapid, focal agonist application onto intact rat striatal neurones in vitro. Behrends JC; Lambert JC; Jensen K Pflugers Arch; 2002 Mar; 443(5-6):707-12. PubMed ID: 11889567 [TBL] [Abstract][Full Text] [Related]
17. Possibility of multiquantal transmission at single inhibitory synapse in cultured rat hippocampal neurons. Fedulova SA; Vasilyev DV; Isaeva EV; Romanyuk SG; Veselovsky NS Neuroscience; 1999; 92(4):1217-30. PubMed ID: 10426479 [TBL] [Abstract][Full Text] [Related]
18. Restrictions on inhibitory circuits contribute to limited recruitment of fast inhibition in rat neocortical pyramidal cells. Ling DS; Benardo LS J Neurophysiol; 1999 Oct; 82(4):1793-807. PubMed ID: 10515969 [TBL] [Abstract][Full Text] [Related]
19. Multiple types of GABAA receptors mediate inhibition in brain stem parasympathetic cardiac neurons in the nucleus ambiguus. Bouairi E; Kamendi H; Wang X; Gorini C; Mendelowitz D J Neurophysiol; 2006 Dec; 96(6):3266-72. PubMed ID: 16914614 [TBL] [Abstract][Full Text] [Related]
20. Brain-derived neurotrophic factor modulates GABAergic synaptic transmission by enhancing presynaptic glutamic acid decarboxylase 65 levels, promoting asynchronous release and reducing the number of activated postsynaptic receptors. Henneberger C; Kirischuk S; Grantyn R Neuroscience; 2005; 135(3):749-63. PubMed ID: 16154289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]