BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10938335)

  • 1. Phase-dependent filtering of sensory information in the oscillatory olfactory center of a terrestrial mollusk.
    Inoue T; Watanabe S; Kawahara S; Kirino Y
    J Neurophysiol; 2000 Aug; 84(2):1112-5. PubMed ID: 10938335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of an output neuron from the oscillatory molluscan olfactory network.
    Shimozono S; Watanabe S; Inoue T; Kirino Y
    Brain Res; 2001 Dec; 921(1-2):98-105. PubMed ID: 11720715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Odor-evoked responses in the olfactory center neurons in the terrestrial slug.
    Murakami M; Watanabe S; Inoue T; Kirino Y
    J Neurobiol; 2004 Feb; 58(3):369-78. PubMed ID: 14750149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of oscillatory neural activities by cholinergic activation of interneurons in the olfactory center of a terrestrial slug.
    Watanabe S; Inoue T; Murakami M; Inokuma Y; Kawahara S; Kirino Y
    Brain Res; 2001 Mar; 896(1-2):30-5. PubMed ID: 11277969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of propagating waves in the olfactory network of a terrestrial mollusk: an electrical and optical study.
    Kleinfeld D; Delaney KR; Fee MS; Flores JA; Tank DW; Gelperin A
    J Neurophysiol; 1994 Sep; 72(3):1402-19. PubMed ID: 7807221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serotonin and NO complementarily regulate generation of oscillatory activity in the olfactory CNS of a terrestrial mollusk.
    Inoue T; Watanabe S; Kirino Y
    J Neurophysiol; 2001 Jun; 85(6):2634-8. PubMed ID: 11387408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective calcium imaging of olfactory interneurons in a land mollusk.
    Watanabe S; Kirino Y
    Neurosci Lett; 2007 May; 417(3):246-9. PubMed ID: 17379408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two types of network oscillations and their odor responses in the primary olfactory center of a terrestrial mollusk.
    Inokuma Y; Inoue T; Watanabe S; Kirino Y
    J Neurophysiol; 2002 Jun; 87(6):3160-4. PubMed ID: 12037217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central and reflex neuronal responses elicited by odor in a terrestrial mollusk.
    Gervais R; Kleinfeld D; Delaney KR; Gelperin A
    J Neurophysiol; 1996 Aug; 76(2):1327-39. PubMed ID: 8871239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent network oscillations by olfactory interneurons: modulation by endogenous amines.
    Gelperin A; Rhines LD; Flores J; Tank DW
    J Neurophysiol; 1993 Jun; 69(6):1930-9. PubMed ID: 8102394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide and carbon monoxide modulate oscillations of olfactory interneurons in a terrestrial mollusk.
    Gelperin A; Flores J; Raccuia-Behling F; Cooke IR
    J Neurophysiol; 2000 Jan; 83(1):116-27. PubMed ID: 10634858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative relationship between odor-induced spike activity and spontaneous oscillations in the primary olfactory system of the terrestrial slug Limax marginatus.
    Ito I; Watanabe S; Kimura T; Kirino Y; Ito E
    Zoolog Sci; 2003 Nov; 20(11):1327-35. PubMed ID: 14624030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of histaminergic neurons and their modulatory effects on oscillatory activity in the olfactory center of the terrestrial slug Limax.
    Matsuo R; Fukata R; Kumagai M; Kobayashi A; Kobayashi S; Matsuo Y
    J Comp Neurol; 2016 Jan; 524(1):119-35. PubMed ID: 26105566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording.
    Gelperin A; Flores J
    J Neurosci Methods; 1997 Mar; 72(1):97-108. PubMed ID: 9128173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Dependent Modulation of Oscillatory Phase and Synchrony by Long-Lasting Depolarizing Inputs in Central Neurons.
    Watanabe S; Hirono M
    eNeuro; 2016; 3(5):. PubMed ID: 27785464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo recordings of spontaneous and odor-modulated dynamics in the Limax olfactory lobe.
    Cooke IR; Gelperin A
    J Neurobiol; 2001 Feb; 46(2):126-41. PubMed ID: 11153014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultured olfactory interneurons from Limax maximus: optical and electrophysiological studies of transmitter-evoked responses.
    Rhines LD; Sokolove PG; Flores J; Tank DW; Gelperin A
    J Neurophysiol; 1993 Jun; 69(6):1940-7. PubMed ID: 8102395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air movement evokes electro-olfactogram oscillations in the olfactory epithelium and modulates olfactory processing in a slug.
    Ito I; Watanabe S; Kirino Y
    J Neurophysiol; 2006 Oct; 96(4):1939-48. PubMed ID: 16837664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for transition from waves to synchrony in the olfactory lobe of Limax.
    Ermentrout B; Wang JW; Flores J; Gelperin A
    J Comput Neurosci; 2004; 17(3):365-83. PubMed ID: 15483397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological characteristics and central projections of two types of interneurons in the visual pathway of Hermissenda.
    Crow T; Tian LM
    J Neurophysiol; 2002 Jan; 87(1):322-32. PubMed ID: 11784753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.