BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10938526)

  • 1. Reduction of the uptake by a macrophagic cell line of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate).
    Jaulin N; Appel M; Passirani C; Barratt G; Labarre D
    J Drug Target; 2000; 8(3):165-72. PubMed ID: 10938526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of nanoparticles bearing heparin or dextran covalently-linked to poly(methyl methacrylate).
    Passirani C; Ferrarini L; Barratt G; Devissaguet JP; Labarre D
    J Biomater Sci Polym Ed; 1999; 10(1):47-62. PubMed ID: 10091922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate).
    Passirani C; Barratt G; Devissaguet JP; Labarre D
    Pharm Res; 1998 Jul; 15(7):1046-50. PubMed ID: 9688058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system.
    Passirani C; Barratt G; Devissaguet JP; Labarre D
    Life Sci; 1998; 62(8):775-85. PubMed ID: 9489513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between a macrophage cell line (J774A1) and surface-modified poly (D,L-lactide) nanocapsules bearing poly(ethylene glycol).
    Mosqueira VC; Legrand P; Gref R; Heurtault B; Appel M; Barratt G
    J Drug Target; 1999; 7(1):65-78. PubMed ID: 10614816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells.
    Ho KM; Mao X; Gu L; Li P
    Langmuir; 2008 Oct; 24(19):11036-42. PubMed ID: 18788820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer.
    Shan X; Liu C; Yuan Y; Xu F; Tao X; Sheng Y; Zhou H
    Colloids Surf B Biointerfaces; 2009 Sep; 72(2):303-11. PubMed ID: 19450955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparsely-distributed silica/PMMA composite particles prepared by static polymerization in aqueous silica dispersion.
    Kawano S; Sei A; Kunitake M
    J Colloid Interface Sci; 2010 Dec; 352(2):348-53. PubMed ID: 20846663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage uptake of core-shell nanoparticles surface modified with poly(ethylene glycol).
    Zahr AS; Davis CA; Pishko MV
    Langmuir; 2006 Sep; 22(19):8178-85. PubMed ID: 16952259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of well-defined core-shell particles by Cu2+-mediated graft copolymerization of methyl methacrylate from bovine serum albumin.
    He C; Liu J; Ye X; Xie L; Zhang Q; Ren X; Zhang G; Wu C
    Langmuir; 2008 Oct; 24(19):10717-22. PubMed ID: 18788763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of janus particles with different stabilizers and formation of one-dimensional particle arrays.
    Onishi S; Tokuda M; Suzuki T; Minami H
    Langmuir; 2015 Jan; 31(2):674-8. PubMed ID: 25541088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems.
    Lemarchand C; Gref R; Passirani C; Garcion E; Petri B; Müller R; Costantini D; Couvreur P
    Biomaterials; 2006 Jan; 27(1):108-18. PubMed ID: 16118015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles.
    Sato K; Nakajima T; Anzai J
    J Colloid Interface Sci; 2012 Dec; 387(1):123-6. PubMed ID: 22967350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of poly(methyl methacrylate) grafted hydroxyapatite nanoparticles via reverse ATRP.
    Wang Y; Xiao Y; Huang X; Lang M
    J Colloid Interface Sci; 2011 Aug; 360(2):415-21. PubMed ID: 21601216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA:PEO diblock and triblock copolymers.
    De Jaeghere F; Allemann E; Feijen J; Kissel T; Doelker E; Gurny R
    J Drug Target; 2000; 8(3):143-53. PubMed ID: 10938524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immobilization of semisoft colloidal crystals formed by polymer-brush-afforded hybrid particles.
    Huang Y; Morinaga T; Tai Y; Tsujii Y; Ohno K
    Langmuir; 2014 Jul; 30(25):7304-12. PubMed ID: 24885119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Body distribution and in situ evading of phagocytic uptake by macrophages of long-circulating poly (ethylene glycol) cyanoacrylate-co-n-hexadecyl cyanoacrylate nanoparticles.
    Huang M; Wu W; Qian J; Wan DJ; Wei XL; Zhu JH
    Acta Pharmacol Sin; 2005 Dec; 26(12):1512-8. PubMed ID: 16297352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood clearance and biodistribution of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization.
    Ohno K; Akashi T; Tsujii Y; Yamamoto M; Tabata Y
    Biomacromolecules; 2012 Mar; 13(3):927-36. PubMed ID: 22324307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.