These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10938630)

  • 1. Theory for the feedback inhibition of fast release of neurotransmitter.
    Yusim K; Parnas H; Segel LA
    Bull Math Biol; 2000 Jul; 62(4):717-57. PubMed ID: 10938630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-vesicle hypothesis for neurotransmitter release: a possible molecular mechanism.
    Yusim K; Parnas H; Segel LA
    Bull Math Biol; 2001 Nov; 63(6):1025-40. PubMed ID: 11732174
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "First step" negative feedback accounts for inhibition of fast neurotransmitter release.
    Khanin R; Parnas H; Segel L
    J Theor Biol; 1997 Oct; 188(3):261-76. PubMed ID: 9344731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of presynaptic muscarinic autoreceptors to serine kinases in low and high release conditions on the rat motor nerve terminal.
    Santafé MM; Lanuza MA; Garcia N; Tomàs M; Tomàs J
    Neuroscience; 2007 Aug; 148(2):432-40. PubMed ID: 17681697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The somatodendritic release of dopamine in the ventral tegmental area and its regulation by afferent transmitter systems.
    Adell A; Artigas F
    Neurosci Biobehav Rev; 2004 Jul; 28(4):415-31. PubMed ID: 15289006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of acetylcholine release by presynaptic muscarinic autoreceptors.
    Re L
    Acta Physiol Pharmacol Ther Latinoam; 1999; 49(4):215-23. PubMed ID: 10797864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of fast neurotransmitter release control based on voltage-dependent interaction between autoreceptors and proteins of the exocytotic machinery.
    Yusim K; Parnas H; Segel L
    Bull Math Biol; 1999 Jul; 61(4):701-25. PubMed ID: 17883221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the feedback between theory and experiment in elucidating the molecular mechanisms underlying neurotransmitter release.
    Khanin R; Parnas I; Parnas H
    Bull Math Biol; 2006 Jul; 68(5):997-1009. PubMed ID: 16832736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro effects of organophosphorus anticholinesterases on muscarinic receptor-mediated inhibition of acetylcholine release in rat striatum.
    Liu J; Chakraborti T; Pope C
    Toxicol Appl Pharmacol; 2002 Jan; 178(2):102-8. PubMed ID: 11814330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-methyl-D-aspartate autoreceptors respond to low and high agonist concentrations by facilitating, respectively, exocytosis and carrier-mediated release of glutamate in rat hippocampus.
    Luccini E; Musante V; Neri E; Raiteri M; Pittaluga A
    J Neurosci Res; 2007 Dec; 85(16):3657-65. PubMed ID: 17671992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Neurohumoral transmitter mechanisms at the cellular level].
    Pletscher A
    Schweiz Arch Neurol Neurochir Psychiatr; 1979; 125(2):193-203. PubMed ID: 45339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine activating A(2A)-receptors coupled to adenylate cyclase/cyclic AMP pathway downregulates nicotinic autoreceptor function at the rat myenteric nerve terminals.
    Duarte-Araújo M; Timóteo MA; Correia-de-Sá P
    Neurochem Int; 2004 Oct; 45(5):641-51. PubMed ID: 15234106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscarinic M(3) facilitation of acetylcholine release from rat myenteric neurons depends on adenosine outflow leading to activation of excitatory A(2A) receptors.
    Vieira C; Duarte-Araújo M; Adães S; Magalhães-Cardoso T; Correia-de-Sá P
    Neurogastroenterol Motil; 2009 Oct; 21(10):1118-e95. PubMed ID: 19470085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The P2Y(1) and P2Y(12) receptors mediate autoinhibition of transmitter release in sympathetic innervated tissues.
    Quintas C; Fraga S; Gonçalves J; Queiroz G
    Neurochem Int; 2009 Dec; 55(7):505-13. PubMed ID: 19447154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of muscarinic receptor antagonism in antipsychotic-induced hippocampal acetylcholine release.
    Johnson DE; Nedza FM; Spracklin DK; Ward KM; Schmidt AW; Iredale PA; Godek DM; Rollema H
    Eur J Pharmacol; 2005 Jan; 506(3):209-19. PubMed ID: 15627430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the alpha(2)-adrenoceptor subtype, which functions as alpha(2)-autoreceptor in human neocortex.
    Feuerstein TJ; Huber B; Vetter J; Aranda H; Van Velthoven V; Limberger N
    J Pharmacol Exp Ther; 2000 Jul; 294(1):356-62. PubMed ID: 10871333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoregulation of neurotransmitter release at autonomic nerve terminals: a questionable theory.
    Kalsner S
    J Auton Pharmacol; 2000; 20(5-6):271-9. PubMed ID: 11350492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Therapeutic use of release-modifying drugs.
    Langer SZ
    Handb Exp Pharmacol; 2008; (184):561-73. PubMed ID: 18064425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonclassical synaptic functions of transmitters.
    Libet B
    Fed Proc; 1986 Nov; 45(12):2678-86. PubMed ID: 2876920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional characterization of muscarinic autoreceptors in rat and human neocortex.
    Stoll C; Eltze M; Lambrecht G; Zentner J; Feuerstein TJ; Jackisch R
    J Neurochem; 2009 Aug; 110(3):837-47. PubMed ID: 19493162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.