BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10938782)

  • 1. Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms.
    Pogue BW; Paulsen KD; Abele C; Kaufman H
    J Biomed Opt; 2000 Apr; 5(2):185-93. PubMed ID: 10938782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory.
    Pogue BW; Patterson MS
    Phys Med Biol; 1994 Jul; 39(7):1157-80. PubMed ID: 15552104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical measurements of absorption changes in two-layered diffusive media.
    Fabbri F; Sassaroli A; Henry ME; Fantini S
    Phys Med Biol; 2004 Apr; 49(7):1183-201. PubMed ID: 15128197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon migration through fetal head in utero using continuous wave, near-infrared spectroscopy: development and evaluation of experimental and numerical models.
    Vishnoi G; Hielscher AH; Ramanujam N; Chance B
    J Biomed Opt; 2000 Apr; 5(2):163-72. PubMed ID: 10938780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model.
    Borjkhani H; Setarehdan SK
    Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy.
    Hallacoglu B; Sassaroli A; Wysocki M; Guerrero-Berroa E; Schnaider Beeri M; Haroutunian V; Shaul M; Rosenberg IH; Troen AM; Fantini S
    J Biomed Opt; 2012 Aug; 17(8):081406-1. PubMed ID: 23224167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals.
    Kohl M; Nolte C; Heekeren HR; Horst S; Scholz U; Obrig H; Villringer A
    Phys Med Biol; 1998 Jun; 43(6):1771-82. PubMed ID: 9651039
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy.
    Metz AJ; Biallas M; Jenny C; Muehlemann T; Wolf M
    Adv Exp Med Biol; 2013; 765():169-175. PubMed ID: 22879030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia.
    Ijichi S; Kusaka T; Isobe K; Islam F; Okubo K; Okada H; Namba M; Kawada K; Imai T; Itoh S
    J Biomed Opt; 2005; 10(2):024026. PubMed ID: 15910099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The modified Beer-Lambert law revisited.
    Kocsis L; Herman P; Eke A
    Phys Med Biol; 2006 Mar; 51(5):N91-8. PubMed ID: 16481677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach.
    Choi J; Wolf M; Toronov V; Wolf U; Polzonetti C; Hueber D; Safonova LP; Gupta R; Michalos A; Mantulin W; Gratton E
    J Biomed Opt; 2004; 9(1):221-9. PubMed ID: 14715077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study.
    Kohri S; Hoshi Y; Tamura M; Kato C; Kuge Y; Tamaki N
    Physiol Meas; 2002 May; 23(2):301-12. PubMed ID: 12051302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.
    Funane T; Atsumori H; Katura T; Obata AN; Sato H; Tanikawa Y; Okada E; Kiguchi M
    Neuroimage; 2014 Jan; 85 Pt 1():150-65. PubMed ID: 23439443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function.
    Chen Y; Zhou S; Xie C; Nioka S; Delivoria-Papadopoulos M; Anday E; Chance B
    J Biomed Opt; 2000 Apr; 5(2):194-200. PubMed ID: 10938783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes.
    Hull EL; Nichols MG; Foster TH
    Phys Med Biol; 1998 Nov; 43(11):3381-404. PubMed ID: 9832022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue phantom-based breast cancer detection using continuous near-infrared sensor.
    Liu D; Liu X; Zhang Y; Wang Q; Lu J
    Bioengineered; 2016 Sep; 7(5):321-326. PubMed ID: 27459672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip.
    Sthalekar CC; Miao Y; Koomson VJ
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):279-286. PubMed ID: 28113987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifrequency frequency-domain spectrometer for tissue analysis.
    Spichtig S; Hornung R; Brown DW; Haensse D; Wolf M
    Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Wave Spectroscopy with Diffusion Theory for Quantification of Optical Properties: Comparison Between Multi-distance and Multi-wavelength Data Fitting Methods.
    Lin YC; Lin ZF; Nioka S; Chen LH; Tseng SH; Chung PC
    Adv Exp Med Biol; 2016; 923():337-343. PubMed ID: 27526161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.