These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 10938782)
1. Calibration of near-infrared frequency-domain tissue spectroscopy for absolute absorption coefficient quantitation in neonatal head-simulating phantoms. Pogue BW; Paulsen KD; Abele C; Kaufman H J Biomed Opt; 2000 Apr; 5(2):185-93. PubMed ID: 10938782 [TBL] [Abstract][Full Text] [Related]
2. Frequency-domain optical absorption spectroscopy of finite tissue volumes using diffusion theory. Pogue BW; Patterson MS Phys Med Biol; 1994 Jul; 39(7):1157-80. PubMed ID: 15552104 [TBL] [Abstract][Full Text] [Related]
3. Optical measurements of absorption changes in two-layered diffusive media. Fabbri F; Sassaroli A; Henry ME; Fantini S Phys Med Biol; 2004 Apr; 49(7):1183-201. PubMed ID: 15128197 [TBL] [Abstract][Full Text] [Related]
4. Photon migration through fetal head in utero using continuous wave, near-infrared spectroscopy: development and evaluation of experimental and numerical models. Vishnoi G; Hielscher AH; Ramanujam N; Chance B J Biomed Opt; 2000 Apr; 5(2):163-72. PubMed ID: 10938780 [TBL] [Abstract][Full Text] [Related]
5. Quantitative Comparison of Analytical Solution and Finite Element Method for Investigation of Near-infrared Light Propagation in Brain Tissue Model. Borjkhani H; Setarehdan SK Basic Clin Neurosci; 2023; 14(2):193-202. PubMed ID: 38107524 [TBL] [Abstract][Full Text] [Related]
6. Absolute measurement of cerebral optical coefficients, hemoglobin concentration and oxygen saturation in old and young adults with near-infrared spectroscopy. Hallacoglu B; Sassaroli A; Wysocki M; Guerrero-Berroa E; Schnaider Beeri M; Haroutunian V; Shaul M; Rosenberg IH; Troen AM; Fantini S J Biomed Opt; 2012 Aug; 17(8):081406-1. PubMed ID: 23224167 [TBL] [Abstract][Full Text] [Related]
7. Determination of the wavelength dependence of the differential pathlength factor from near-infrared pulse signals. Kohl M; Nolte C; Heekeren HR; Horst S; Scholz U; Obrig H; Villringer A Phys Med Biol; 1998 Jun; 43(6):1771-82. PubMed ID: 9651039 [TBL] [Abstract][Full Text] [Related]
8. The effect of basic assumptions on the tissue oxygen saturation value of near infrared spectroscopy. Metz AJ; Biallas M; Jenny C; Muehlemann T; Wolf M Adv Exp Med Biol; 2013; 765():169-175. PubMed ID: 22879030 [TBL] [Abstract][Full Text] [Related]
10. Quantification of cerebral hemoglobin as a function of oxygenation using near-infrared time-resolved spectroscopy in a piglet model of hypoxia. Ijichi S; Kusaka T; Isobe K; Islam F; Okubo K; Okada H; Namba M; Kawada K; Imai T; Itoh S J Biomed Opt; 2005; 10(2):024026. PubMed ID: 15910099 [TBL] [Abstract][Full Text] [Related]
11. The modified Beer-Lambert law revisited. Kocsis L; Herman P; Eke A Phys Med Biol; 2006 Mar; 51(5):N91-8. PubMed ID: 16481677 [TBL] [Abstract][Full Text] [Related]
12. Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. Choi J; Wolf M; Toronov V; Wolf U; Polzonetti C; Hueber D; Safonova LP; Gupta R; Michalos A; Mantulin W; Gratton E J Biomed Opt; 2004; 9(1):221-9. PubMed ID: 14715077 [TBL] [Abstract][Full Text] [Related]
13. Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study. Kohri S; Hoshi Y; Tamura M; Kato C; Kuge Y; Tamaki N Physiol Meas; 2002 May; 23(2):301-12. PubMed ID: 12051302 [TBL] [Abstract][Full Text] [Related]
14. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis. Funane T; Atsumori H; Katura T; Obata AN; Sato H; Tanikawa Y; Okada E; Kiguchi M Neuroimage; 2014 Jan; 85 Pt 1():150-65. PubMed ID: 23439443 [TBL] [Abstract][Full Text] [Related]
15. Preliminary evaluation of dual wavelength phased array imaging on neonatal brain function. Chen Y; Zhou S; Xie C; Nioka S; Delivoria-Papadopoulos M; Anday E; Chance B J Biomed Opt; 2000 Apr; 5(2):194-200. PubMed ID: 10938783 [TBL] [Abstract][Full Text] [Related]
17. Tissue phantom-based breast cancer detection using continuous near-infrared sensor. Liu D; Liu X; Zhang Y; Wang Q; Lu J Bioengineered; 2016 Sep; 7(5):321-326. PubMed ID: 27459672 [TBL] [Abstract][Full Text] [Related]
18. Optical Characterization of Tissue Phantoms Using a Silicon Integrated fdNIRS System on Chip. Sthalekar CC; Miao Y; Koomson VJ IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):279-286. PubMed ID: 28113987 [TBL] [Abstract][Full Text] [Related]
19. Multifrequency frequency-domain spectrometer for tissue analysis. Spichtig S; Hornung R; Brown DW; Haensse D; Wolf M Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664 [TBL] [Abstract][Full Text] [Related]
20. Continuous Wave Spectroscopy with Diffusion Theory for Quantification of Optical Properties: Comparison Between Multi-distance and Multi-wavelength Data Fitting Methods. Lin YC; Lin ZF; Nioka S; Chen LH; Tseng SH; Chung PC Adv Exp Med Biol; 2016; 923():337-343. PubMed ID: 27526161 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]