BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10938786)

  • 1. Brain tumor demarcation using optical spectroscopy; an in vitro study.
    Lin WC; Toms SA; Motamedi M; Jansen ED; Mahadevan-Jansen A
    J Biomed Opt; 2000 Apr; 5(2):214-20. PubMed ID: 10938786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo brain tumor demarcation using optical spectroscopy.
    Lin WC; Toms SA; Johnson M; Jansen ED; Mahadevan-Jansen A
    Photochem Photobiol; 2001 Apr; 73(4):396-402. PubMed ID: 11332035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical spectroscopy characteristics can differentiate benign and malignant renal tissues: a potentially useful modality.
    Parekh DJ; Lin WC; Herrell SD
    J Urol; 2005 Nov; 174(5):1754-8. PubMed ID: 16217277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of optical spectroscopy in epilepsy surgery in children.
    Bhatia S; Ragheb J; Johnson M; Oh S; Sandberg DI; Lin WC
    Neurosurg Focus; 2008 Sep; 25(3):E24. PubMed ID: 18759626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum wavelength for the differentiation of brain tumor tissue using autofluorescence spectroscopy.
    Saraswathy A; Jayasree RS; Baiju KV; Gupta AK; Pillai VP
    Photomed Laser Surg; 2009 Jun; 27(3):425-33. PubMed ID: 19025404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical spectroscopy for in-vitro differentiation of pediatric neoplastic and epileptogenic brain lesions.
    Lin WC; Sandberg DI; Bhatia S; Johnson M; Morrison G; Ragheb J
    J Biomed Opt; 2009; 14(1):014028. PubMed ID: 19256716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence spectroscopy as a highly potential single-entity tool to identify chromophores and fluorophores: study on neoplastic human brain lesions.
    Nazeer SS; Saraswathy A; Gupta AK; Jayasree RS
    J Biomed Opt; 2013 Jun; 18(6):067002. PubMed ID: 23733026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence lifetime spectroscopy of glioblastoma multiforme.
    Marcu L; Jo JA; Butte PV; Yong WH; Pikul BK; Black KL; Thompson RC
    Photochem Photobiol; 2004; 80():98-103. PubMed ID: 15339216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-crystal tunable filter spectral imaging for brain tumor demarcation.
    Gebhart SC; Thompson RC; Mahadevan-Jansen A
    Appl Opt; 2007 Apr; 46(10):1896-910. PubMed ID: 17356636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence lifetime spectroscopy for guided therapy of brain tumors.
    Butte PV; Mamelak AN; Nuno M; Bannykh SI; Black KL; Marcu L
    Neuroimage; 2011 Jan; 54 Suppl 1(Suppl 1):S125-35. PubMed ID: 21055475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnostic potential of laser-induced autofluorescence emission in brain tissue.
    Chung YG; Schwartz JA; Gardner CM; Sawaya RE; Jacques SL
    J Korean Med Sci; 1997 Apr; 12(2):135-42. PubMed ID: 9170019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spongioblastoma of the cerebral hemispheres (histological and in vitro study)].
    Bronzini E; Gullotta F
    Pathologica; 1976; 68(983-984):425-34. PubMed ID: 1016411
    [No Abstract]   [Full Text] [Related]  

  • 14. Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity.
    Toms SA; Lin WC; Weil RJ; Johnson MD; Jansen ED; Mahadevan-Jansen A
    Neurosurgery; 2005 Oct; 57(4 Suppl):382-91; discussion 382-91. PubMed ID: 16234690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy.
    Volynskaya Z; Haka AS; Bechtel KL; Fitzmaurice M; Shenk R; Wang N; Nazemi J; Dasari RR; Feld MS
    J Biomed Opt; 2008; 13(2):024012. PubMed ID: 18465975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy.
    Yong WH; Butte PV; Pikul BK; Jo JA; Fang Q; Papaioannou T; Black K; Marcu L
    Front Biosci; 2006 May; 11():1255-63. PubMed ID: 16368511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-modality optical biopsy of glioblastomas multiforme with diffuse reflectance and fluorescence: ex vivo retrieval of optical properties.
    Du Le VN; Provias J; Murty N; Patterson MS; Nie Z; Hayward JE; Farrell TJ; McMillan W; Zhang W; Fang Q
    J Biomed Opt; 2017 Feb; 22(2):27002. PubMed ID: 28157245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo optical spectroscopy detects radiation damage in brain tissue.
    Lin WC; Mahadevan-Jansen A; Johnson MD; Weil RJ; Toms SA
    Neurosurgery; 2005 Sep; 57(3):518-25; discussion 518-25. PubMed ID: 16145531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possibility of using laser spectroscopy for the intraoperative detection of nonfluorescing brain tumors and the boundaries of brain tumor infiltrates. Technical note.
    Utsuki S; Oka H; Sato S; Suzuki S; Shimizu S; Tanaka S; Fujii K
    J Neurosurg; 2006 Apr; 104(4):618-20. PubMed ID: 16619668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.