These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 10938827)
1. Intracellular pH regulation in maize root tips exposed to ammonium at high external pH. Gerendás J; Ratcliffe RG J Exp Bot; 2000 Feb; 51(343):207-19. PubMed ID: 10938827 [TBL] [Abstract][Full Text] [Related]
2. An in Vivo Nuclear Magnetic Resonance Investigation of Ion Transport in Maize (Zea mays) and Spartina anglica Roots during Exposure to High Salt Concentrations. Spickett CM; Smirnoff N; Ratcliffe RG Plant Physiol; 1993 Jun; 102(2):629-638. PubMed ID: 12231853 [TBL] [Abstract][Full Text] [Related]
3. Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Lundberg P; Lundquist PO Planta; 2004 Aug; 219(4):661-72. PubMed ID: 15179512 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of ammonium in Norway spruce (Picea abies) seedlings measured by in vivo 14N-NMR. Aarnes H; Eriksen AB; Petersen D; Rise F J Exp Bot; 2007; 58(5):929-34. PubMed ID: 17210989 [TBL] [Abstract][Full Text] [Related]
5. Observations on the subcellular distribution of the ammonium ion in maize root tissue using in-vivo (14)N-nuclear magnetic resonance spectroscopy. Lee RB; Ratcliffe RG Planta; 1991 Feb; 183(3):359-67. PubMed ID: 24193746 [TBL] [Abstract][Full Text] [Related]
6. Mineral nitrogen sources differently affect root glutamine synthetase isoforms and amino acid balance among organs in maize. Prinsi B; Espen L BMC Plant Biol; 2015 Apr; 15():96. PubMed ID: 25886826 [TBL] [Abstract][Full Text] [Related]
7. Effect of NO3- transport and reduction on intracellular pH: an in vivo NMR study in maize roots. Espen L; Nocito FF; Cocucci M J Exp Bot; 2004 Sep; 55(405):2053-61. PubMed ID: 15310818 [TBL] [Abstract][Full Text] [Related]
8. In vivo 133Cs-NMR a probe for studying subcellular compartmentation and ion uptake in maize root tissue. Pfeffer PE; Rolin DB; Brauer D; Tu SI; Kumosinski TF Biochim Biophys Acta; 1990 Sep; 1054(2):169-75. PubMed ID: 2400781 [TBL] [Abstract][Full Text] [Related]
9. Cytoplasmic malate levels in maize root tips during K+ ion uptake determined by 13C-NMR spectroscopy. Chang K; Roberts JK Biochim Biophys Acta; 1991 Mar; 1092(1):29-34. PubMed ID: 2009309 [TBL] [Abstract][Full Text] [Related]
10. Exploring symbiotic nitrogen fixation and assimilation in pea root nodules by in vivo 15N nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry. Scharff AM; Egsgaard H; Hansen PE; Rosendahl L Plant Physiol; 2003 Jan; 131(1):367-78. PubMed ID: 12529544 [TBL] [Abstract][Full Text] [Related]
11. pH affects ammonium, nitrate and proton fluxes in the apical region of conifer and soybean roots. Hawkins BJ; Robbins S Physiol Plant; 2010 Feb; 138(2):238-47. PubMed ID: 19947965 [TBL] [Abstract][Full Text] [Related]
12. In vivo qualitative changes of 31P NMR in stressed maize roots vis-à-vis carbon substrate determining the degree of stress. Nagarajan S; Dijkema C; Van As H Indian J Exp Biol; 2000 May; 38(5):477-82. PubMed ID: 11272413 [TBL] [Abstract][Full Text] [Related]
13. Improved Cytoplasmic pH Regulation, Increased Lactate Efflux, and Reduced Cytoplasmic Lactate Levels Are Biochemical Traits Expressed in Root Tips of Whole Maize Seedlings Acclimated to a Low-Oxygen Environment. Xia JH; Roberts J Plant Physiol; 1994 Jun; 105(2):651-657. PubMed ID: 12232232 [TBL] [Abstract][Full Text] [Related]
14. Effect of organochlorine pesticides exposure on the maize root metabolome assessed using high-resolution magic-angle spinning (1)H NMR spectroscopy. Blondel C; Khelalfa F; Reynaud S; Fauvelle F; Raveton M Environ Pollut; 2016 Jul; 214():539-548. PubMed ID: 27131813 [TBL] [Abstract][Full Text] [Related]
15. Kinetic studies of the variations of cytoplasmic pH, nucleotide triphosphates (31P-NMR) and lactate during normoxic and anoxic transitions in maize root tips. Saint-Ges V; Roby C; Bligny R; Pradet A; Douce R Eur J Biochem; 1991 Sep; 200(2):477-82. PubMed ID: 1889412 [TBL] [Abstract][Full Text] [Related]
16. A metabolic study of the regulation of proteolysis by sugars in maize root tips: effects of glycerol and dihydroxyacetone. Brouquisse R; Rolin D; Cortès S; Gaudillère M; Evrard A; Roby C Planta; 2007 Feb; 225(3):693-709. PubMed ID: 16944197 [TBL] [Abstract][Full Text] [Related]
17. Metabolic response of roots to osmotic stress in sensitive and tolerant cereals--qualitative in vivo [31P] nuclear magnetic resonance study. Nagarajan S; Dijkema C; Van As H Indian J Biochem Biophys; 2001 Jun; 38(3):149-52. PubMed ID: 11693376 [TBL] [Abstract][Full Text] [Related]
18. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.). Gu R; Duan F; An X; Zhang F; von Wirén N; Yuan L Plant Cell Physiol; 2013 Sep; 54(9):1515-24. PubMed ID: 23832511 [TBL] [Abstract][Full Text] [Related]
19. Sugar exudation by roots of kallar grass [Leptochloa fusca (L.) Kunth] is strongly affected by the nitrogen source. Mahmood T; Woitke M; Gimmler H; Kaiser WM Planta; 2002 Apr; 214(6):887-94. PubMed ID: 11941465 [TBL] [Abstract][Full Text] [Related]
20. Expression of NADH-dependent glutamate synthase protein in the epidermis and exodermis of rice roots in response to the supply of ammonium ions. Ishiyama K; Hayakawa T; Yamaya T Planta; 1998 Mar; 204(3):288-94. PubMed ID: 9530872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]