BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 10939247)

  • 1. Recombinant acylheptapeptide lichenysin: high level of production by Bacillus subtilis cells.
    Yakimov MM; Giuliano L; Timmis KN; Golyshin PN
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):217-24. PubMed ID: 10939247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein.
    Steller S; Sokoll A; Wilde C; Bernhard F; Franke P; Vater J
    Biochemistry; 2004 Sep; 43(35):11331-43. PubMed ID: 15366943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis.
    Sandrin C; Peypoux F; Michel G
    Biotechnol Appl Biochem; 1990 Aug; 12(4):370-5. PubMed ID: 2119191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.
    Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT
    Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction.
    Tapi A; Chollet-Imbert M; Scherens B; Jacques P
    Appl Microbiol Biotechnol; 2010 Feb; 85(5):1521-31. PubMed ID: 19730852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of sustainable chemistry to produce an acyl amino acid surfactant.
    Reznik GO; Vishwanath P; Pynn MA; Sitnik JM; Todd JJ; Wu J; Jiang Y; Keenan BG; Castle AB; Haskell RF; Smith TF; Somasundaran P; Jarrell KA
    Appl Microbiol Biotechnol; 2010 May; 86(5):1387-97. PubMed ID: 20094712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis.
    Wang X; Luo C; Liu Y; Nie Y; Liu Y; Zhang R; Chen Z
    J Microbiol Biotechnol; 2010 Feb; 20(2):301-10. PubMed ID: 20208433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A putative lichenysin A synthetase operon in Bacillus licheniformis: initial characterization.
    Yakimov MM; Kröger A; Slepak TN; Giuliano L; Timmis KN; Golyshin PN
    Biochim Biophys Acta; 1998 Aug; 1399(2-3):141-53. PubMed ID: 9765590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3.
    Steller S; Vollenbroich D; Leenders F; Stein T; Conrad B; Hofemeister J; Jacques P; Thonart P; Vater J
    Chem Biol; 1999 Jan; 6(1):31-41. PubMed ID: 9889147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stoichiometry and specificity of in vitro phosphopantetheinylation and aminoacylation of the valine-activating module of surfactin synthetase.
    Weinreb PH; Quadri LE; Walsh CT; Zuber P
    Biochemistry; 1998 Feb; 37(6):1575-84. PubMed ID: 9484228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin.
    Konz D; Doekel S; Marahiel MA
    J Bacteriol; 1999 Jan; 181(1):133-40. PubMed ID: 9864322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The sypA, sypS, and sypC synthetase genes encode twenty-two modules involved in the nonribosomal peptide synthesis of syringopeptin by Pseudomonas syringae pv. syringae B301D.
    Scholz-Schroeder BK; Soule JD; Gross DC
    Mol Plant Microbe Interact; 2003 Apr; 16(4):271-80. PubMed ID: 12744455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ detection of the intermediates in the biosynthesis of surfactin, a lipoheptapeptide from Bacillus subtilis OKB 105, by whole-cell cell matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in combination with mutant analysis.
    Vater J; Wilde C; Kell H
    Rapid Commun Mass Spectrom; 2009 May; 23(10):1493-8. PubMed ID: 19350532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter.
    Sun H; Bie X; Lu F; Lu Y; Wu Y; Lu Z
    Can J Microbiol; 2009 Aug; 55(8):1003-6. PubMed ID: 19898540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains.
    Balibar CJ; Vaillancourt FH; Walsh CT
    Chem Biol; 2005 Nov; 12(11):1189-200. PubMed ID: 16298298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and molecular characteristics of lichenysin and its relationship with surface activity.
    Nerurkar AS
    Adv Exp Med Biol; 2010; 672():304-15. PubMed ID: 20545292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR.
    Hsieh FC; Li MC; Lin TC; Kao SS
    Curr Microbiol; 2004 Sep; 49(3):186-91. PubMed ID: 15386102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D.
    Moyne AL; Cleveland TE; Tuzun S
    FEMS Microbiol Lett; 2004 May; 234(1):43-9. PubMed ID: 15109718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of srfA operon from Bacillus subtilis C9 and its expression in E. coli.
    Lee YK; Yoon BD; Yoon JH; Lee SG; Song JJ; Kim JG; Oh HM; Kim HS
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):567-72. PubMed ID: 17268783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptidyl thiophenols as substrates for nonribosomal peptide cyclases.
    Sieber SA; Tao J; Walsh CT; Marahiel MA
    Angew Chem Int Ed Engl; 2004 Jan; 43(4):493-8. PubMed ID: 14735544
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.