These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 10939270)

  • 1. Biological variability and exposure assessment.
    Delignette-Muller ML; Rosso L
    Int J Food Microbiol; 2000 Jul; 58(3):203-12. PubMed ID: 10939270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of predictive microbiology to estimate the number of Bacillus cereus in pasteurised milk at the point of consumption.
    Zwietering MH; de Wit JC; Notermans S
    Int J Food Microbiol; 1996 Jun; 30(1-2):55-70. PubMed ID: 8856374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Bacillus cereus in pasteurized milk products.
    Larsen HD; Jørgensen K
    Int J Food Microbiol; 1999 Feb; 46(2):173-6. PubMed ID: 10728618
    [No Abstract]   [Full Text] [Related]  

  • 4. A quantitative microbiological exposure assessment model for Bacillus cereus in REPFEDs.
    Daelman J; Membré JM; Jacxsens L; Vermeulen A; Devlieghere F; Uyttendaele M
    Int J Food Microbiol; 2013 Sep; 166(3):433-49. PubMed ID: 24029028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial biodiversity, quality and shelf life of microfiltered and pasteurized extended shelf life (ESL) milk from Germany, Austria and Switzerland.
    Schmidt VS; Kaufmann V; Kulozik U; Scherer S; Wenning M
    Int J Food Microbiol; 2012 Mar; 154(1-2):1-9. PubMed ID: 22240060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stochastic approach for modelling the effects of temperature on the growth rate of Bacillus cereus sensu lato.
    Le Marc Y; Buss da Silva N; Postollec F; Huchet V; Baranyi J; Ellouze M
    Int J Food Microbiol; 2021 Jul; 349():109241. PubMed ID: 34022612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survival variability of 12 strains of Bacillus cereus yielded to spray drying of whole milk.
    Alvarenga VO; Brancini GTP; Silva EK; da Pia AKR; Campagnollo FB; Braga GÚL; Hubinger MD; Sant'Ana AS
    Int J Food Microbiol; 2018 Dec; 286():80-89. PubMed ID: 30053697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of contamination sources of Bacillus cereus in pasteurized milk.
    Lin S; Schraft H; Odumeru JA; Griffiths MW
    Int J Food Microbiol; 1998 Sep; 43(3):159-71. PubMed ID: 9801192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A study of B. cereus, isolated from pasteurized milk].
    Polianskaia KN
    Vopr Pitan; 1967; 26(3):20-4. PubMed ID: 4975969
    [No Abstract]   [Full Text] [Related]  

  • 10. Prevalence of Bacillus cereus in dried milk products used by Chilean School Feeding Program.
    Reyes JE; Bastías JM; Gutiérrez MR; Rodríguez Mde L
    Food Microbiol; 2007 Feb; 24(1):1-6. PubMed ID: 16943088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving quantitative exposure assessment by considering genetic diversity of B. cereus in cooked, pasteurised and chilled foods.
    Afchain AL; Carlin F; Nguyen-The C; Albert I
    Int J Food Microbiol; 2008 Nov; 128(1):165-73. PubMed ID: 18805600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The occurrence of Bacillus cereus in Danish pasteurized milk.
    Larsen HD; Jørgensen K
    Int J Food Microbiol; 1997 Feb; 34(2):179-86. PubMed ID: 9039564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Factors affecting germination and growth of Bacillus cereus spores in milk.
    Helmy ZA; Abd-El-Bakey A; Mohamed EI
    Zentralbl Mikrobiol; 1984; 139(2):135-41. PubMed ID: 6428077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying exposure to vero-cytotoxigenic Escherichia coli O157 in milk sold as pasteurized: a model-based approach.
    Clough HE; Clancy D; French NP
    Int J Food Microbiol; 2009 May; 131(2-3):95-105. PubMed ID: 19232769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dairy product environment on the growth of Bacillus cereus.
    Tirloni E; Ghelardi E; Celandroni F; Bernardi C; Stella S
    J Dairy Sci; 2017 Sep; 100(9):7026-7034. PubMed ID: 28711259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes.
    Pouillot R; Albert I; Cornu M; Denis JB
    Int J Food Microbiol; 2003 Mar; 81(2):87-104. PubMed ID: 12457583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of a novel amplicon-based sequencing approach reveals the diversity of the Bacillus cereus group in stored raw and pasteurized milk.
    Porcellato D; Aspholm M; Skeie SB; Mellegård H
    Food Microbiol; 2019 Aug; 81():32-39. PubMed ID: 30910086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastically modeling Listeria monocytogenes growth in farm tank milk.
    Albert I; Pouillot R; Denis JB
    Risk Anal; 2005 Oct; 25(5):1171-85. PubMed ID: 16297223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Vanmuysen SC; Wuytack EY; Michiels CW
    Commun Agric Appl Biol Sci; 2003; 68(3):7-10. PubMed ID: 14702650
    [No Abstract]   [Full Text] [Related]  

  • 20. Short communication: Source tracking Bacillus cereus in an extended-shelf-life milk processing plant using partial sequencing of rpoB and multilocus sequence typing.
    Mugadza DT; Owusu-Darko R; Buys EM
    J Dairy Sci; 2019 Jan; 102(1):135-139. PubMed ID: 30527979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.