These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10939388)

  • 1. Electrocatalysis of NADH oxidation with an electropolymerized film of 1,4-bis(3,4-dihydroxyphenyl)-2,3-dimethylbutane.
    Ciszewski A; Milczarek G
    Anal Chem; 2000 Jul; 72(14):3203-9. PubMed ID: 10939388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignosulfonate-modified electrodes: electrochemical properties and electrocatalysis of NADH oxidation.
    Milczarek G
    Langmuir; 2009 Sep; 25(17):10345-53. PubMed ID: 19456182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces.
    Li Y; Shi L; Ma W; Li DW; Kraatz HB; Long YT
    Bioelectrochemistry; 2011 Feb; 80(2):128-31. PubMed ID: 20678972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic detection of NADH and glycerol by NAD(+)-modified carbon electrodes.
    Alvarez-González MI; Saidman SB; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P
    Anal Chem; 2000 Feb; 72(3):520-7. PubMed ID: 10695137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes-polymer-redox mediator hybrid thin film for electrocatalytic sensing.
    Raj CR; Chakraborty S
    Biosens Bioelectron; 2006 Dec; 22(5):700-6. PubMed ID: 16584882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical bioreactor with regeneration of NAD+ by rotating graphite disk electrode with PMS adsorbed.
    Miyawaki O; Yano T
    Enzyme Microb Technol; 1992 Jun; 14(6):474-8. PubMed ID: 1368798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalysis of NADH oxidation using electrochemically activated fluphenazine on carbon nanotube electrode.
    Sobczak A; Rębiś T; Milczarek G
    Bioelectrochemistry; 2015 Dec; 106(Pt B):308-15. PubMed ID: 26211441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mediator-modified electrodes for catalytic NADH oxidation: high rate constants at interesting overpotentials.
    Munteanu FD; Mano N; Kuhn A; Gorton L
    Bioelectrochemistry; 2002 May; 56(1-2):67-72. PubMed ID: 12009446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrocatalytic CO2 fixation by regenerating reduced cofactor NADH during Calvin Cycle using glassy carbon electrode.
    Ali I; Amiri S; Ullah N; Younas M; Rezakazemi M
    PLoS One; 2020; 15(9):e0239340. PubMed ID: 32941542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing.
    Manesh KM; Santhosh P; Gopalan A; Lee KP
    Talanta; 2008 Jun; 75(5):1307-14. PubMed ID: 18585217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-Hydroxytryptophan as a precursor of a catalyst for the oxidation of NADH.
    de-los-Santos-Alvarez N; Lobo-Castañón MJ; Miranda-Ordieres AJ; Tuñón-Blanco P; Abruña HD
    Anal Chem; 2005 Apr; 77(8):2624-31. PubMed ID: 15828802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste.
    Antiochia R; Lavagnini I; Magno F
    Anal Bioanal Chem; 2005 Apr; 381(7):1355-61. PubMed ID: 15761736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode.
    Kuramitz H; Nakata Y; Kawasaki M; Tanaka S
    Chemosphere; 2001 Oct; 45(1):37-43. PubMed ID: 11572589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical investigations of the reaction mechanism and kinetics between NADH and redox-active (NC)2C6H3-NHOH/(NC)2C6H3-NO from 4-nitrophthalonitrile-(NC)2C6H3-NO2-modified electrode.
    Lima PR; Santos Wde J; de Oliveira AB; Goulart MO; Kubota LT
    Biosens Bioelectron; 2008 Nov; 24(3):448-54. PubMed ID: 18562191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical polymerization of toluidine blue o and its electrocatalytic activity toward NADH oxidation.
    Cai CX; Xue KH
    Talanta; 1998 Dec; 47(5):1107-19. PubMed ID: 18967416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic oxidation of NADH at the self-assembled monolayer of nickel(II) macrocycle on gold electrode.
    Raj CR; Gobi KV; Ohsaka T
    Bioelectrochemistry; 2000 Jun; 51(2):181-6. PubMed ID: 10910167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: an in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems.
    Raitman OA; Katz E; Bückmann AF; Willner I
    J Am Chem Soc; 2002 Jun; 124(22):6487-96. PubMed ID: 12033880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemistry of immobilized redox enzymes: kinetic characteristics of NADH oxidation catalysis at diaphorase monolayers affinity immobilized on electrodes.
    Limoges B; Marchal D; Mavré F; Savéant JM
    J Am Chem Soc; 2006 Feb; 128(6):2084-92. PubMed ID: 16464111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.