These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10939416)

  • 1. Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode.
    Kim YC; Lee KH; Sasaki S; Hashimoto K; Ikebukuro K; Karube I
    Anal Chem; 2000 Jul; 72(14):3379-82. PubMed ID: 10939416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flow method with photocatalytic oxidation of dissolved organic matter using a solid-phase (TiO2) reactor followed by amperometric detection of consumed oxygen.
    Kim YC; Sasaki S; Yano K; Ikebukuro K; Hashimoto K; Karube I
    Anal Chem; 2002 Aug; 74(15):3858-64. PubMed ID: 12175176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of photocatalytic biosensor for the evaluation of biochemical oxygen demand.
    Chee GJ; Nomura Y; Ikebukuro K; Karube I
    Biosens Bioelectron; 2005 Jul; 21(1):67-73. PubMed ID: 15967352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research.
    Chen J; Zhang J; Xian Y; Ying X; Liu M; Jin L
    Water Res; 2005 Apr; 39(7):1340-6. PubMed ID: 15862333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable Photoelectrochromic Visualization Sensor for Detection of Chemical Oxygen Demand.
    Dai Z; Hao N; Xiong M; Han X; Zuo Y; Wang K
    Anal Chem; 2020 Oct; 92(19):13604-13609. PubMed ID: 32924512
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Potentiometric Detection of Chemical Oxygen Demand Using a Portable Self-Powered Sensor Chip.
    Hao N; Dai Z; Xiong M; Han X; Zuo Y; Qian J; Wang K
    Anal Chem; 2021 Jun; 93(24):8393-8398. PubMed ID: 34101434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode.
    Li L; Zhang S; Li G; Zhao H
    Anal Chim Acta; 2012 Nov; 754():47-53. PubMed ID: 23140953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand.
    Wang C; Wu J; Wang P; Ao Y; Hou J; Qian J
    Anal Chim Acta; 2013 Mar; 767():141-7. PubMed ID: 23452798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A surface-fluorinated-TiO2-KMnO4 photocatalytic system for determination of chemical oxygen demand.
    Zhu L; Chen Y; Wu Y; Li X; Tang H
    Anal Chim Acta; 2006 Jul; 571(2):242-7. PubMed ID: 17723445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Nafion Film Cover to Enhance the Analytical Performance of the CuO/Cu Electrochemical Sensor for Determination of Chemical Oxygen Demand.
    Carchi T; Lapo B; Alvarado J; Espinoza-Montero PJ; Llorca J; Fernández L
    Sensors (Basel); 2019 Feb; 19(3):. PubMed ID: 30736381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Detoxification of textile industry effluents by photocatalytic treatment].
    Gebrati L; Idrissi LL; Mountassir Y; Nejmeddine A
    Environ Technol; 2010 May; 31(6):625-32. PubMed ID: 20540424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial sensors on a respiratory basis for wastewater monitoring.
    Riedel K; Kunze G; König A
    Adv Biochem Eng Biotechnol; 2002; 75():81-118. PubMed ID: 11783844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on photocatalytic oxidation for determination of the low chemical oxygen demand using a nano-TiO2-Ce(SO4)2 coexisted system.
    Chai Y; Ding H; Zhang Z; Xian Y; Pan Z; Jin L
    Talanta; 2006 Jan; 68(3):610-5. PubMed ID: 18970364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photocatalytic pretreatment of oily wastewater from the restaurant by a vacuum ultraviolet/TiO2 system.
    Kang JX; Lu L; Zhan W; Li B; Li DS; Ren YZ; Liu DQ
    J Hazard Mater; 2011 Feb; 186(1):849-54. PubMed ID: 21146288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film.
    Wang J; Wu C; Wu K; Cheng Q; Zhou Y
    Anal Chim Acta; 2012 Jul; 736():55-61. PubMed ID: 22769005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit.
    Geun Jeong B; Min Yoon S; Ho Choi C; Koang Kwon K; Sik Hyun M; Heui Yi D; Soo Park H; Kim M; Joo Kim H
    J Environ Monit; 2007 Dec; 9(12):1352-7. PubMed ID: 18049774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of textile dyehouse wastewater by TiO2 photocatalysis.
    Pekakis PA; Xekoukoulotakis NP; Mantzavinos D
    Water Res; 2006 Mar; 40(6):1276-86. PubMed ID: 16510167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved UV/O
    Le G; Yang H; Yu X
    Water Sci Technol; 2018 Mar; 77(5-6):1271-1279. PubMed ID: 29528315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WO₃/W nanopores sensor for chemical oxygen demand (COD) determination under visible light.
    Li X; Bai J; Liu Q; Li J; Zhou B
    Sensors (Basel); 2014 Jun; 14(6):10680-90. PubMed ID: 24940868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.