These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10939721)

  • 21. Reproducibility of LASIK flap thickness using the Hansatome microkeratome.
    Giledi O; Mulhern MG; Espinosa M; Kerr A; Daya SM
    J Cataract Refract Surg; 2004 May; 30(5):1031-7. PubMed ID: 15130640
    [TBL] [Abstract][Full Text] [Related]  

  • 22. LASIK flap thickness profile and reproducibility of the standard vs zero compression Hansatome microkeratomes: three-dimensional display with Artemis VHF digital ultrasound.
    Reinstein DZ; Archer TJ; Gobbe M
    J Refract Surg; 2011 Jun; 27(6):417-26. PubMed ID: 21410084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical low coherence reflectometry for noncontact measurements of flap thickness during laser in situ keratomileusis.
    Genth U; Mrochen M; Wälti R; Salaheldine MM; Seiler T
    Ophthalmology; 2002 May; 109(5):973-8. PubMed ID: 11986106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Errors of residual stromal thickness estimation in LASIK.
    Cheng HC; Chen YT; Yeh SI; Yau CW
    Ophthalmic Surg Lasers Imaging; 2008; 39(2):107-13. PubMed ID: 18435333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reproducibility of flap thickness with IntraLase FS and Moria LSK-1 and M2 microkeratomes.
    Talamo JH; Meltzer J; Gardner J
    J Refract Surg; 2006 Jun; 22(6):556-61. PubMed ID: 16805118
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epithelial, stromal, and corneal pachymetry changes during orthokeratology.
    Reinstein DZ; Gobbe M; Archer TJ; Couch D; Bloom B
    Optom Vis Sci; 2009 Aug; 86(8):E1006-14. PubMed ID: 19584769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Posterior corneal curvature changes after undersurface ablation of the flap and in-the-bed LASIK retreatment.
    Maldonado MJ; Nieto JC; Díez-Cuenca M; Piñero DP
    Ophthalmology; 2006 Jul; 113(7):1125-33. PubMed ID: 16713626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors influencing corneal flap thickness in laser in situ keratomileusis with a femtosecond laser.
    Kim CY; Song JH; Na KS; Chung SH; Joo CK
    Korean J Ophthalmol; 2011 Feb; 25(1):8-14. PubMed ID: 21350688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Change in epithelial thickness profile 24 hours and longitudinally for 1 year after myopic LASIK: three-dimensional display with Artemis very high-frequency digital ultrasound.
    Reinstein DZ; Archer TJ; Gobbe M
    J Refract Surg; 2012 Mar; 28(3):195-201. PubMed ID: 22301100
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors that affect corneal flap thickness with the Hansatome microkeratome.
    Gailitis RP; Lagzdins M
    J Refract Surg; 2002; 18(4):439-43. PubMed ID: 12160153
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring corneal structures with slitlamp-adapted optical coherence tomography in laser in situ keratomileusis.
    Wirbelauer C; Pham DT
    J Cataract Refract Surg; 2004 Sep; 30(9):1851-60. PubMed ID: 15342046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Online optical coherence pachymetry in laser in situ keratomileusis].
    Wirbelauer C; Häberle H; Pham DT
    Ophthalmologe; 2004 Feb; 101(2):140-5. PubMed ID: 14991310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous monitoring of corneal thickness changes during LASIK with online optical coherence pachymetry.
    Wirbelauer C; Pham DT
    J Cataract Refract Surg; 2004 Dec; 30(12):2559-68. PubMed ID: 15617925
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lenticule thickness readout for small incision lenticule extraction compared to artemis three-dimensional very high-frequency digital ultrasound stromal measurements.
    Reinstein DZ; Archer TJ; Gobbe M
    J Refract Surg; 2014 May; 30(5):304-9. PubMed ID: 24893355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predictability of corneal flap thickness in laser in situ keratomileusis using three different microkeratomes.
    Shemesh G; Dotan G; Lipshitz I
    J Refract Surg; 2002; 18(3 Suppl):S347-51. PubMed ID: 12046880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of Corneal Epithelial Remodeling After Femtosecond Laser-Assisted LASIK and Small Incision Lenticule Extraction (SMILE).
    Ryu IH; Kim BJ; Lee JH; Kim SW
    J Refract Surg; 2017 Apr; 33(4):250-256. PubMed ID: 28407165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo confocal microscopy through-focusing to measure corneal flap thickness after laser in situ keratomileusis.
    Gokmen F; Jester JV; Petroll WM; McCulley JP; Cavanagh HD
    J Cataract Refract Surg; 2002 Jun; 28(6):962-70. PubMed ID: 12036637
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flap thickness reproducibility in laser in situ keratomileusis with a femtosecond laser: optical coherence tomography measurement.
    Kim JH; Lee D; Rhee KI
    J Cataract Refract Surg; 2008 Jan; 34(1):132-6. PubMed ID: 18165093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stromal surface topography-guided custom ablation as a repair tool for corneal irregular astigmatism.
    Reinstein DZ; Gobbe M; Archer TJ; Youssefi G; Sutton HF
    J Refract Surg; 2015 Jan; 31(1):54-9. PubMed ID: 25599543
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of central corneal thickness measurement by scanning slit topography, infrared, and ultrasound pachymetry in normal and post-LASIK eyes.
    Ho WC; Lam PT; Chiu TY; Yim MC; Lau FT
    Int Ophthalmol; 2020 Nov; 40(11):2913-2921. PubMed ID: 32617805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.