BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 10939758)

  • 1. Continuous veno-venous hemodiafiltration for the treatment of spontaneous tumor lysis syndrome complicated by acute renal failure and severe hyperuricemia.
    Agha-Razii M; Amyot SL; Pichette V; Cardinal J; Ouimet D; Leblanc M
    Clin Nephrol; 2000 Jul; 54(1):59-63. PubMed ID: 10939758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Continuous veno-venous hemofiltration in acute renal insufficiency].
    Freudiger H; Lévy M; Suter P; Favre H
    Nephrologie; 1990; 11(3):129-33. PubMed ID: 2234267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous renal replacement therapy in critically ill patients.
    Zobel G; Rödl S; Urlesberger B; Kuttnig-Haim M; Ring E
    Kidney Int Suppl; 1998 May; 66():S169-73. PubMed ID: 9573597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [An exceptionally severe hyperuricemia in acute renal failure caused by spontaneous tumor lysis syndrome (TLS)].
    Basile C; Montanaro A
    G Ital Nefrol; 2003; 20(5):525-8. PubMed ID: 14634969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous veno-venous hemodiafiltration in children after cardiac surgery.
    Jander A; Tkaczyk M; Pagowska-Klimek I; Pietrzykowski W; Moll J; Krajewski W; Nowicki M
    Eur J Cardiothorac Surg; 2007 Jun; 31(6):1022-8. PubMed ID: 17403606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of acyclovir during continuous veno-venous hemodialysis and hemodiafiltration with high-efficiency membranes.
    Khajehdehi P; Jamal JA; Bastani B
    Clin Nephrol; 2000 Oct; 54(4):351-5. PubMed ID: 11076113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hypercytokinemia in the pathophysiology of tumor lysis syndrome (TLS) and the treatment with continuous hemodiafiltration using a polymethylmethacrylate membrane hemofilter (PMMA-CHDF).
    Nakamura M; Oda S; Sadahiro T; Hirayama Y; Tateishi Y; Abe R; Hirasawa H
    Transfus Apher Sci; 2009 Feb; 40(1):41-7. PubMed ID: 19109071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changing acute renal failure treatment from intermittent hemodialysis to continuous hemofiltration: impact on azotemic control.
    Bellomo R; Farmer M; Bhonagiri S; Porceddu S; Ariens M; M'Pisi D; Ronco C
    Int J Artif Organs; 1999 Mar; 22(3):145-50. PubMed ID: 10357242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumour lysis syndrome and acute renal failure in Burkitt's lymphoma. Description of 2 cases and a review of the literature on prevention and management.
    Veenstra J; Krediet RT; Somers R; Arisz L
    Neth J Med; 1994 Nov; 45(5):211-6. PubMed ID: 7830847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous hemodiafiltration in children.
    Bishof NA; Welch TR; Strife CF; Ryckman FC
    Pediatrics; 1990 May; 85(5):819-23. PubMed ID: 2330246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of acute renal failure in the intensive care unit: lower costs by intermittent dialysis than continuous venovenous hemodiafiltration.
    Farese S; Jakob SM; Kalicki R; Frey FJ; Uehlinger DE
    Artif Organs; 2009 Aug; 33(8):634-40. PubMed ID: 19624581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of sustained hemodiafiltration with continuous venovenous hemodiafiltration for the treatment of critically ill patients with acute kidney injury.
    Abe M; Okada K; Suzuki M; Nagura C; Ishihara Y; Fujii Y; Ikeda K; Kaizu K; Matsumoto K
    Artif Organs; 2010 Apr; 34(4):331-8. PubMed ID: 20420616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood flow rate effects in continuous venovenous hemodiafiltration on blood urea nitrogen and creatinine reduction.
    Gilbert RW
    Nephrol Nurs J; 2000 Oct; 27(5):503-6, 531. PubMed ID: 16649325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High dialysate flow rate continuous arteriovenous hemodialysis: a new approach for the treatment of acute renal failure and tumor lysis syndrome.
    Pichette V; Leblanc M; Bonnardeaux A; Ouimet D; Geadah D; Cardinal J
    Am J Kidney Dis; 1994 Apr; 23(4):591-6. PubMed ID: 8154498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous venovenous hemodiafiltration versus hemodialysis as renal replacement therapy in patients with acute renal failure in the intensive care unit.
    Chang JW; Yang WS; Seo JW; Lee JS; Lee SK; Park SK
    Scand J Urol Nephrol; 2004; 38(5):417-21. PubMed ID: 15764254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Continuous arteriovenous hemofiltration and hemodiafiltration in a newborn infant with acute kidney insufficiency].
    Berghuis M; Donckerwolcke RA; Van Vught AJ
    Tijdschr Kindergeneeskd; 1991 Feb; 59(1):27-31. PubMed ID: 1903218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Continuous venovenous hemodiafiltration in critically ill patients with acute renal failure].
    Toft P; Felding M; Tønnesen EK
    Ugeskr Laeger; 2000 May; 162(20):2868-71. PubMed ID: 10860424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal replacement therapies for critically ill pediatric patients.
    Sakarcan A; Karaböcüoğlu M
    Turk J Pediatr; 1995; 37(1):7-13. PubMed ID: 7732612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metformin-associated lactic acidosis treated with continuous renal replacement therapy.
    Alivanis P; Giannikouris I; Paliuras C; Arvanitis A; Volanaki M; Zervos A
    Clin Ther; 2006 Mar; 28(3):396-400. PubMed ID: 16750454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of continuous venovenous hemodiafiltration with single-pass albumin dialysate allows for removal of serum bilirubin.
    Chawla LS; Georgescu F; Abell B; Seneff MG; Kimmel PL
    Am J Kidney Dis; 2005 Mar; 45(3):e51-6. PubMed ID: 15754264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.