These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10940029)

  • 41. Application of alpha-keto acid decarboxylases in biotransformations.
    Iding H; Siegert P; Mesch K; Pohl M
    Biochim Biophys Acta; 1998 Jun; 1385(2):307-22. PubMed ID: 9655924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of nicotinamide mononucleotide adenylyltransferase from thermophilic archaea.
    Raffaelli N; Pisani FM; Lorenzi T; Emanuelli M; Amici A; Ruggieri S; Magni G
    J Bacteriol; 1997 Dec; 179(24):7718-23. PubMed ID: 9401030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of a pH regulated Na(+)/H(+) antiporter of Methanococcus jannaschii.
    Hellmer J; Pätzold R; Zeilinger C
    FEBS Lett; 2002 Sep; 527(1-3):245-9. PubMed ID: 12220668
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure and properties of pyruvate decarboxylase and site-directed mutagenesis of the Zymomonas mobilis enzyme.
    Candy JM; Duggleby RG
    Biochim Biophys Acta; 1998 Jun; 1385(2):323-38. PubMed ID: 9655927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of a gene involved in the biosynthesis pathway of the terminal sugar of the archaellin N-linked tetrasaccharide in Methanococcus maripaludis.
    Ding Y; Jones GM; Brimacombe C; Uchida K; Aizawa S; Logan SM; Kelly JF; Jarrell KF
    Antonie Van Leeuwenhoek; 2016 Jan; 109(1):131-48. PubMed ID: 26590834
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enzymology and evolution of the pyruvate pathway to 2-oxobutyrate in Methanocaldococcus jannaschii.
    Drevland RM; Waheed A; Graham DE
    J Bacteriol; 2007 Jun; 189(12):4391-400. PubMed ID: 17449626
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase.
    Conway T; Osman YA; Konnan JI; Hoffmann EM; Ingram LO
    J Bacteriol; 1987 Mar; 169(3):949-54. PubMed ID: 3029037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis.
    Eram MS; Oduaran E; Ma K
    Archaea; 2014; 2014():349379. PubMed ID: 24982594
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification and characterization of a DNA primase from the hyperthermophilic archaeon Methanococcus jannaschii.
    Desogus G; Onesti S; Brick P; Rossi M; Pisani FM
    Nucleic Acids Res; 1999 Nov; 27(22):4444-50. PubMed ID: 10536154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic studies on phosphopantothenoylcysteine decarboxylase: trapping of an enethiolate intermediate with a mechanism-based inactivating agent.
    Strauss E; Zhai H; Brand LA; McLafferty FW; Begley TP
    Biochemistry; 2004 Dec; 43(49):15520-33. PubMed ID: 15581364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The role of His113 and His114 in pyruvate decarboxylase from Zymomonas mobilis.
    Schenk G; Leeper FJ; England R; Nixon PF; Duggleby RG
    Eur J Biochem; 1997 Aug; 248(1):63-71. PubMed ID: 9310361
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Soluble P-type ATPase from an archaeon, Methanococcus jannaschii.
    Ogawa H; Haga T; Toyoshima C
    FEBS Lett; 2000 Apr; 471(1):99-102. PubMed ID: 10760521
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.
    Lin F; Ferguson KL; Boyer DR; Lin XN; Marsh EN
    ACS Chem Biol; 2015 Apr; 10(4):1137-44. PubMed ID: 25647642
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The pyrimidine nucleotide reductase step in riboflavin and F(420) biosynthesis in archaea proceeds by the eukaryotic route to riboflavin.
    Graupner M; Xu H; White RH
    J Bacteriol; 2002 Apr; 184(7):1952-7. PubMed ID: 11889103
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of bound pyruvate essential for the activity of phosphatidylserine decarboxylase of Escherichia coli.
    Satre M; Kennedy EP
    J Biol Chem; 1978 Jan; 253(2):479-83. PubMed ID: 338609
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigations on the pyruvate decarboxylase catalysed oxidative decarboxylation of 2-oxoacids by 2.6-dichlorophenolindophenol.
    Hübner G; Atanassova M; Schellenberger A
    Biomed Biochim Acta; 1986; 45(7):823-32. PubMed ID: 3539109
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New class of IMP cyclohydrolases in Methanococcus jannaschii.
    Graupner M; Xu H; White RH
    J Bacteriol; 2002 Mar; 184(5):1471-3. PubMed ID: 11844782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pyruvate decarboxylase is like acetolactate synthase (ILV2) and not like the pyruvate dehydrogenase E1 subunit.
    Green JB
    FEBS Lett; 1989 Mar; 246(1-2):1-5. PubMed ID: 2651151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus.
    Hattori A; Unno H; Goda S; Motoyama K; Yoshimura T; Hemmi H
    J Bacteriol; 2015 Nov; 197(21):3463-71. PubMed ID: 26303832
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.