These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 10940320)

  • 41. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons.
    Chalasani SH; Kato S; Albrecht DR; Nakagawa T; Abbott LF; Bargmann CI
    Nat Neurosci; 2010 May; 13(5):615-21. PubMed ID: 20364145
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals.
    Hino T; Hirai S; Ishihara T; Fujiwara M
    Genes Cells; 2021 Jun; 26(6):411-425. PubMed ID: 33817914
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Gonadal Maturation Changes Chemotaxis Behavior and Neural Processing in the Olfactory Circuit of Caenorhabditis elegans.
    Fujiwara M; Aoyama I; Hino T; Teramoto T; Ishihara T
    Curr Biol; 2016 Jun; 26(12):1522-1531. PubMed ID: 27265391
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Voltage-dependent anion channel (VDAC-1) is required for olfactory sensing in Caenorhabditis elegans.
    Uozumi T; Hamakawa M; Deno YK; Nakajo N; Hirotsu T
    Genes Cells; 2015 Oct; 20(10):802-16. PubMed ID: 26223767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optical Dissection of Synaptic Plasticity for Early Adaptation in Caenorhabditis elegans.
    Ashida K; Shidara H; Hotta K; Oka K
    Neuroscience; 2020 Jan; 428():112-121. PubMed ID: 31917348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The role of oxygen intermediates in the retention time of diacetyl adaptation in the nematode Caenorhabditis elegans.
    Nishino A; Kanno R; Matsuura T
    J Exp Zool A Ecol Genet Physiol; 2013 Oct; 319(8):431-9. PubMed ID: 23733487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans.
    Mori I
    Annu Rev Genet; 1999; 33():399-422. PubMed ID: 10690413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Olfactory habituation in Drosophila-odor encoding and its plasticity in the antennal lobe.
    Twick I; Lee JA; Ramaswami M
    Prog Brain Res; 2014; 208():3-38. PubMed ID: 24767477
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans.
    Yamada K; Hirotsu T; Matsuki M; Butcher RA; Tomioka M; Ishihara T; Clardy J; Kunitomo H; Iino Y
    Science; 2010 Sep; 329(5999):1647-50. PubMed ID: 20929849
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Odorant-selective genes and neurons mediate olfaction in C. elegans.
    Bargmann CI; Hartwieg E; Horvitz HR
    Cell; 1993 Aug; 74(3):515-27. PubMed ID: 8348618
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Odour concentration-dependent olfactory preference change in C. elegans.
    Yoshida K; Hirotsu T; Tagawa T; Oda S; Wakabayashi T; Iino Y; Ishihara T
    Nat Commun; 2012 Mar; 3():739. PubMed ID: 22415830
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Central synaptic mechanisms underlie short-term olfactory habituation in Drosophila larvae.
    Larkin A; Karak S; Priya R; Das A; Ayyub C; Ito K; Rodrigues V; Ramaswami M
    Learn Mem; 2010 Dec; 17(12):645-53. PubMed ID: 21106688
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Behavioral plasticity in C. elegans: paradigms, circuits, genes.
    Hobert O
    J Neurobiol; 2003 Jan; 54(1):203-23. PubMed ID: 12486705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Behavioral and genetic characterization of habituation using Caenorhabditis elegans.
    Giles AC; Rankin CH
    Neurobiol Learn Mem; 2009 Sep; 92(2):139-46. PubMed ID: 18771741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Postnatal odorant exposure induces peripheral olfactory plasticity at the cellular level.
    Cadiou H; Aoudé I; Tazir B; Molinas A; Fenech C; Meunier N; Grosmaitre X
    J Neurosci; 2014 Apr; 34(14):4857-70. PubMed ID: 24695705
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans.
    L'Etoile ND; Coburn CM; Eastham J; Kistler A; Gallegos G; Bargmann CI
    Neuron; 2002 Dec; 36(6):1079-89. PubMed ID: 12495623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The cellular and genetic basis of olfactory responses in Caenorhabditis elegans.
    Sengupta P; Colbert HA; Kimmel BE; Dwyer N; Bargmann CI
    Ciba Found Symp; 1993; 179():235-44; discussion 244-50. PubMed ID: 8168378
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional expression of olfactory receptors using cell-free expression system for biomimetic sensors towards odorant detection.
    Chen F; Wang J; Du L; Zhang X; Zhang F; Chen W; Cai W; Wu C; Wang P
    Biosens Bioelectron; 2019 Apr; 130():382-388. PubMed ID: 30266424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans.
    Colbert HA; Smith TL; Bargmann CI
    J Neurosci; 1997 Nov; 17(21):8259-69. PubMed ID: 9334401
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional expression of a mammalian olfactory receptor in Caenorhabditis elegans.
    Milani N; Guarin E; Renfer E; Nef P; Andres-Barquin PJ
    Neuroreport; 2002 Dec; 13(18):2515-20. PubMed ID: 12499859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.