These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 10940401)

  • 1. Analytic analysis of the force sharing among synergistic muscles in one- and two-degree-of-freedom models.
    Binding P; Jinha A; Herzog W
    J Biomech; 2000 Nov; 33(11):1423-32. PubMed ID: 10940401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forces of individual cat ankle extensor muscles during locomotion predicted using static optimization.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1997 Oct; 30(10):1025-33. PubMed ID: 9391869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity-dependent cost function for the prediction of force sharing among synergistic muscles in a one degree of freedom model.
    Schappacher-Tilp G; Binding P; Braverman E; Herzog W
    J Biomech; 2009 Mar; 42(5):657-60. PubMed ID: 19232619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model.
    Jinha A; Ait-Haddou R; Herzog W
    J Biomech; 2006; 39(6):1145-52. PubMed ID: 16549102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of optimization models that estimate the forces exerted by synergistic muscles.
    Herzog W; Leonard TR
    J Biomech; 1991; 24 Suppl 1():31-9. PubMed ID: 1791180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force-sharing among the primary cat ankle muscles.
    Herzog W
    Eur J Morphol; 1998 Dec; 36(4-5):280-7. PubMed ID: 10099958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer of mechanical energy between ankle and knee joints by gastrocnemius and plantaris muscles during cat locomotion.
    Prilutsky BI; Herzog W; Leonard T
    J Biomech; 1996 Apr; 29(4):391-403. PubMed ID: 8964769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordination of medial gastrocnemius and soleus forces during cat locomotion.
    Kaya M; Leonard T; Herzog W
    J Exp Biol; 2003 Oct; 206(Pt 20):3645-55. PubMed ID: 12966056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical power and work of cat soleus, gastrocnemius and plantaris muscles during locomotion: possible functional significance of muscle design and force patterns.
    Prilutsky BI; Herzog W; Allinger TL
    J Exp Biol; 1996 Apr; 199(Pt 4):801-14. PubMed ID: 8788087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variations in force-time histories of cat gastrocnemius, soleus and plantaris muscles for consecutive walking steps.
    Herzog W; Zatsiorsky V; Prilutsky BI; Leonard TR
    J Exp Biol; 1994 Jun; 191():19-36. PubMed ID: 7931035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait.
    Dumas R; Moissenet F; Gasparutto X; Cheze L
    Proc Inst Mech Eng H; 2012 Feb; 226(2):146-60. PubMed ID: 22468466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of Inverse Optimization for Functional and Physiological Considerations Related to the Force-Sharing Problem.
    Tsirakos D; Baltzopoulos V; Bartlett R
    Crit Rev Biomed Eng; 2017; 45(1-6):511-547. PubMed ID: 29953387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. No functionally relevant mechanical effects of epimuscular myofascial connections between rat ankle plantar flexors.
    Tijs C; van Dieën JH; Maas H
    J Exp Biol; 2015 Sep; 218(Pt 18):2935-41. PubMed ID: 26206361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-joint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb.
    van Antwerp KW; Burkholder TJ; Ting LH
    J Biomech; 2007; 40(16):3570-9. PubMed ID: 17640652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Validation of Model-Predicted Muscle Forces in the Cat Hindlimb During Locomotion.
    Karabulut D; Dogru SC; Lin YC; Pandy MG; Herzog W; Arslan YZ
    J Biomech Eng; 2020 May; 142(5):. PubMed ID: 31825073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-length properties and functional demands of cat gastrocnemius, soleus and plantaris muscles.
    Herzog W; Leonard TR; Renaud JM; Wallace J; Chaki G; Bornemisza S
    J Biomech; 1992 Nov; 25(11):1329-35. PubMed ID: 1400534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A task-specific validation of homogeneous non-linear optimisation approaches.
    Jinha A; Ait-Haddou R; Kaya M; Herzog W
    J Theor Biol; 2009 Aug; 259(4):695-700. PubMed ID: 19406130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between ankle muscle and joint kinetics during the stance phase of locomotion in the cat.
    Fowler EG; Gregor RJ; Hodgson JA; Roy RR
    J Biomech; 1993; 26(4-5):465-83. PubMed ID: 8478350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.