These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10940414)

  • 1. A versatile shear and compression apparatus for mechanical stimulation of tissue culture explants.
    Frank EH; Jin M; Loening AM; Levenston ME; Grodzinsky AJ
    J Biomech; 2000 Nov; 33(11):1523-7. PubMed ID: 10940414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biosynthetic response of cartilage explants to dynamic compression.
    Sah RL; Kim YJ; Doong JY; Grodzinsky AJ; Plaas AH; Sandy JD
    J Orthop Res; 1989; 7(5):619-36. PubMed ID: 2760736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue shear deformation stimulates proteoglycan and protein biosynthesis in bovine cartilage explants.
    Jin M; Frank EH; Quinn TM; Hunziker EB; Grodzinsky AJ
    Arch Biochem Biophys; 2001 Nov; 395(1):41-8. PubMed ID: 11673864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage.
    Bonassar LJ; Grodzinsky AJ; Srinivasan A; Davila SG; Trippel SB
    Arch Biochem Biophys; 2000 Jul; 379(1):57-63. PubMed ID: 10864441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanical apparatus with microprocessor controlled stress profile for cyclic compression of cultured articular cartilage explants.
    Parkkinen JJ; Lammi MJ; Karjalainen S; Laakkonen J; Hyvärinen E; Tiihonen A; Helminen HJ; Tammi M
    J Biomech; 1989; 22(11-12):1285-91. PubMed ID: 2625430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A direct compression stimulator for articular cartilage and meniscal explants.
    Aufderheide AC; Athanasiou KA
    Ann Biomed Eng; 2006 Sep; 34(9):1463-74. PubMed ID: 16897420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of compression on the loss of newly synthesized proteoglycans and proteins from cartilage explants.
    Sah RL; Doong JY; Grodzinsky AJ; Plaas AH; Sandy JD
    Arch Biochem Biophys; 1991 Apr; 286(1):20-9. PubMed ID: 1897947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computer-controlled mechanical culture system for biological testing of articular cartilage explants.
    Steinmeyer J
    J Biomech; 1997 Aug; 30(8):841-5. PubMed ID: 9239570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sulfation pattern of chondroitin sulfate from articular cartilage explants in response to mechanical loading.
    Sauerland K; Plaas AH; Raiss RX; Steinmeyer J
    Biochim Biophys Acta; 2003 Jul; 1638(3):241-8. PubMed ID: 12878325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model.
    Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD
    J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthetic response and mechanical properties of articular cartilage after injurious compression.
    Kurz B; Jin M; Patwari P; Cheng DM; Lark MW; Grodzinsky AJ
    J Orthop Res; 2001 Nov; 19(6):1140-6. PubMed ID: 11781016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load-controlled compression of articular cartilage induces a transient stimulation of aggrecan gene expression.
    Valhmu WB; Stazzone EJ; Bachrach NM; Saed-Nejad F; Fischer SG; Mow VC; Ratcliffe A
    Arch Biochem Biophys; 1998 May; 353(1):29-36. PubMed ID: 9578597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermittent sub-ambient interstitial hydrostatic pressure as a potential mechanical stimulator for chondrocyte metabolism.
    Suh JK; Baek GH; Arøen A; Malin CM; Niyibizi C; Evans CH; Westerhausen-Larson A
    Osteoarthritis Cartilage; 1999 Jan; 7(1):71-80. PubMed ID: 10367016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous three-dimensional strain fields during unconfined cyclic compression in bovine articular cartilage explants.
    Neu CP; Hull ML; Walton JH
    J Orthop Res; 2005 Nov; 23(6):1390-8. PubMed ID: 15972257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward an MRI-based method to measure non-uniform cartilage deformation: an MRI-cyclic loading apparatus system and steady-state cyclic displacement of articular cartilage under compressive loading.
    Neu CP; Hull ML
    J Biomech Eng; 2003 Apr; 125(2):180-8. PubMed ID: 12751279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanobioreactors for Cartilage Tissue Engineering.
    Weber JF; Perez R; Waldman SD
    Methods Mol Biol; 2015; 1340():203-19. PubMed ID: 26445841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The proteoglycan metabolism of mature bovine articular cartilage explants superimposed to continuously applied cyclic mechanical loading.
    Steinmeyer J; Knue S
    Biochem Biophys Res Commun; 1997 Nov; 240(1):216-21. PubMed ID: 9367913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Static and dynamic compression regulate cartilage metabolism of PRoteoGlycan 4 (PRG4).
    Nugent GE; Schmidt TA; Schumacher BL; Voegtline MS; Bae WC; Jadin KD; Sah RL
    Biorheology; 2006; 43(3,4):191-200. PubMed ID: 16912393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen biosynthesis of mechanically loaded articular cartilage explants.
    Ackermann B; Steinmeyer J
    Osteoarthritis Cartilage; 2005 Oct; 13(10):906-14. PubMed ID: 16129631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decellularization of porcine articular cartilage explants and their subsequent repopulation with human chondroprogenitor cells.
    Luo L; Eswaramoorthy R; Mulhall KJ; Kelly DJ
    J Mech Behav Biomed Mater; 2015 Mar; 55():21-31. PubMed ID: 26521085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.