BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

725 related articles for article (PubMed ID: 10940876)

  • 41. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells.
    Zhou LJ; Tedder TF
    Proc Natl Acad Sci U S A; 1996 Mar; 93(6):2588-92. PubMed ID: 8637918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Generation of CMRF-44+ monocyte-derived dendritic cells: insights into phenotype and function.
    Vuckovic S; Fearnley DB; Mannering SI; Dekker J; Whyte LF; Hart DN
    Exp Hematol; 1998 Dec; 26(13):1255-64. PubMed ID: 9845382
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of interleukin-7 on the in vitro development and maturation of monocyte derived human dendritic cells.
    Li L; Masucci MG; Levitsky V
    Scand J Immunol; 2000 Apr; 51(4):361-71. PubMed ID: 10736108
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interleukin-10 in combination with M-CSF and IL-4 contributes to development of the rare population of CD14+CD16++ cells derived from human monocytes.
    Li G; Hangoc G; Broxmeyer HE
    Biochem Biophys Res Commun; 2004 Sep; 322(2):637-43. PubMed ID: 15325277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Areca nut extracts suppress the differentiation and functionality of human monocyte-derived dendritic cells.
    Wang CC; Chen TY; Wu HY; Liu TY; Jan TR
    J Periodontal Res; 2012 Apr; 47(2):198-203. PubMed ID: 21958362
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Porcine dendritic cells generated in vitro: morphological, phenotypic and functional properties.
    Carrasco CP; Rigden RC; Schaffner R; Gerber H; Neuhaus V; Inumaru S; Takamatsu H; Bertoni G; McCullough KC; Summerfield A
    Immunology; 2001 Oct; 104(2):175-84. PubMed ID: 11683958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sinomenine promotes differentiation but impedes maturation and co-stimulatory molecule expression of human monocyte-derived dendritic cells.
    Chen Y; Yang C; Jin N; Xie Z; Fei L; Jia Z; Wu Y
    Int Immunopharmacol; 2007 Aug; 7(8):1102-10. PubMed ID: 17570327
    [TBL] [Abstract][Full Text] [Related]  

  • 48. T-cadinol and calamenene induce dendritic cells from human monocytes and drive Th1 polarization.
    Takei M; Umeyama A; Arihara S
    Eur J Pharmacol; 2006 May; 537(1-3):190-9. PubMed ID: 16631732
    [TBL] [Abstract][Full Text] [Related]  

  • 49. IL-15-induced conversion of monocytes to mature dendritic cells.
    Saikh KU; Khan AS; Kissner T; Ulrich RG
    Clin Exp Immunol; 2001 Dec; 126(3):447-55. PubMed ID: 11737061
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Differential chemokine receptor expression and function in human monocyte subpopulations.
    Weber C; Belge KU; von Hundelshausen P; Draude G; Steppich B; Mack M; Frankenberger M; Weber KS; Ziegler-Heitbrock HW
    J Leukoc Biol; 2000 May; 67(5):699-704. PubMed ID: 10811011
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells.
    Ohishi K; Varnum-Finney B; Serda RE; Anasetti C; Bernstein ID
    Blood; 2001 Sep; 98(5):1402-7. PubMed ID: 11520788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Monocyte-derived CD1a+ and CD1a- dendritic cell subsets differ in their cytokine production profiles, susceptibilities to transfection, and capacities to direct Th cell differentiation.
    Chang CC; Wright A; Punnonen J
    J Immunol; 2000 Oct; 165(7):3584-91. PubMed ID: 11034359
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biological characteristics of dendritic cells derived from peripheral blood of patients with epithelial ovarian cancer.
    Lan CY; Liu JH; Xia JC; Zheng LM
    Ai Zheng; 2009 Feb; 28(2):132-7. PubMed ID: 19550123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Longitudinal characterization of bovine monocyte-derived dendritic cells from mid-gestation into subsequent lactation reveals nadir in phenotypic maturation and macrophage-like cytokine profile in late gestation.
    Pomeroy B; Sipka A; Klaessig S; Schukken Y
    J Reprod Immunol; 2016 Nov; 118():1-8. PubMed ID: 27596279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Characterization of a CSF-induced proliferating subpopulation of human peripheral blood monocytes by surface marker expression and cytokine production.
    Finnin M; Hamilton JA; Moss ST
    J Leukoc Biol; 1999 Dec; 66(6):953-60. PubMed ID: 10614777
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distinguishing human peripheral blood CD16
    Fromm PD; Silveira PA; Hsu JL; Papadimitrious MS; Lo TH; Ju X; Kupresanin F; Romano A; Hsu WH; Bryant CE; Kong B; Abadir E; Mekkawy A; M McGuire H; Groth BFS; Cunningham I; Newman E; Gibson J; Hogarth PM; Hart DNJ; Clark GJ
    J Leukoc Biol; 2020 Feb; 107(2):323-339. PubMed ID: 31749181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Roles of interleukin-10 differentiated dendritic cell of allergic asthma patients in T-lymphocyte proliferation in vitro].
    Tang JF; Guan SH; Wang ZG
    Zhonghua Yi Xue Za Zhi; 2012 Oct; 92(40):2851-4. PubMed ID: 23290216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Generation of CD14+ dendritic cells in vitro with GM-CSF and IL-4].
    Guo J; Cai M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):276-9. PubMed ID: 12224299
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Muramyl dipeptide and mononuclear cell supernatant induce Langhans-type cells from human monocytes.
    Mizuno K; Okamoto H; Horio T
    J Leukoc Biol; 2001 Sep; 70(3):386-94. PubMed ID: 11527988
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Activities of granulocyte-macrophage colony-stimulating factor and interleukin-3 on monocytes.
    Suzuki H; Katayama N; Ikuta Y; Mukai K; Fujieda A; Mitani H; Araki H; Miyashita H; Hoshino N; Nishikawa H; Nishii K; Minami N; Shiku H
    Am J Hematol; 2004 Apr; 75(4):179-89. PubMed ID: 15054806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.