BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10941508)

  • 1. An improved nonfluorescent detection system for in situ hybridization in plants.
    Weiss H; Pasierbek P; Maluszynska J
    Biotech Histochem; 2000 Mar; 75(2):49-53. PubMed ID: 10941508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical mapping of 18S-25S rDNA and 5S rDNA in Lupinus via fluorescent in situ hybridization.
    Naganowska B; Zielińska A
    Cell Mol Biol Lett; 2002; 7(2B):665-70. PubMed ID: 12378225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods.
    Ha S; Moore PH; Heinz D; Kato S; Ohmido N; Fukui K
    Plant Mol Biol; 1999 Apr; 39(6):1165-73. PubMed ID: 10380803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization.
    Fuchs J; Schubert I
    Chromosome Res; 1995 Mar; 3(2):94-100. PubMed ID: 7749568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and chromosomal localization of DNA sequences related to ribosomal subrepeats in Vicia faba.
    Maggini F; Cremonini R; Zolfino C; Tucci GF; D'Ovidio R; Delre V; DePace C; Scarascia Mugnozza GT; Cionini PG
    Chromosoma; 1991 May; 100(4):229-34. PubMed ID: 2055134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sugar beet (Beta vulgaris L.) reference FISH karyotype for chromosome and chromosome-arm identification, integration of genetic linkage groups and analysis of major repeat family distribution.
    Paesold S; Borchardt D; Schmidt T; Dechyeva D
    Plant J; 2012 Nov; 72(4):600-11. PubMed ID: 22775355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution of highly repeated DNA sequences in species of the genus Lens Miller.
    Galasso I
    Genome; 2003 Dec; 46(6):1118-24. PubMed ID: 14663530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Lens culinaris ssp. culinaris chromosomes by physical mapping of repetitive DNA sequences.
    Galasso I; Schmidt T; Pignone D
    Chromosome Res; 2001; 9(3):199-209. PubMed ID: 11330394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primer-induced labeling of pea and field bean chromosomes in situ and in suspension.
    Macas J; Dolezel J; Gualberti G; Pich U; Schubert I; Lucretti S
    Biotechniques; 1995 Sep; 19(3):402-4; 407-8. PubMed ID: 7495553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of digoxigenin-labeled DNA probes hybridized to plant chromosomes in situ.
    Leitch IJ; Heslop-Harrison JS
    Methods Mol Biol; 1994; 28():177-85. PubMed ID: 7509693
    [No Abstract]   [Full Text] [Related]  

  • 11. Novel repeated DNA sequences in safflower (Carthamus tinctorius L.) (Asteraceae): cloning, sequencing, and physical mapping by fluorescence in situ hybridization.
    Raina SN; Sharma S; Sasakuma T; Kishii M; Vaishnavi S
    J Hered; 2005; 96(4):424-9. PubMed ID: 15731214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent in situ hybridisation to amphioxus chromosomes.
    Castro LF; Holland PW
    Zoolog Sci; 2002 Dec; 19(12):1349-53. PubMed ID: 12520094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AFLPs represent highly repetitive sequences in Asparagus officinalis L.
    Reamon-Büttner SM; Schmidt T; Jung C
    Chromosome Res; 1999; 7(4):297-304. PubMed ID: 10461875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants.
    Golczyk H
    Protoplasma; 2019 May; 256(3):873-880. PubMed ID: 30656455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A family of dispersed repeats in the genome of Vicia faba: structure, chromosomal organization, redundancy modulation, and evolution.
    Frediani M; Gelati MT; Maggini F; Galasso I; Minelli S; Ceccarelli M; Cionini PG
    Chromosoma; 1999 Sep; 108(5):317-24. PubMed ID: 10525968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical locations of 5S and 18S-25S rDNA in Asian and American diploid Hordeum species with the I genome.
    Taketa S; Ando H; Takeda K; von Bothmer R
    Heredity (Edinb); 2001 May; 86(Pt 5):522-30. PubMed ID: 11554968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ribosomal DNA sites in Lolium species by fluorescence in situ hybridization.
    Thomas HM; Harper JA; Meredith MR; Morgan WG; Thomas ID; Timms E; King IP
    Chromosome Res; 1996 Nov; 4(7):486-90. PubMed ID: 8939359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method for the physical mapping of transgenes in barley using in situ hybridization.
    Salvo-Garrido H; Travella S; Schwarzacher T; Harwood WA; Snape JW
    Genome; 2001 Feb; 44(1):104-10. PubMed ID: 11269343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical mapping of rRNA genes in Medicago sativa and M. glomerata by fluorescent in situ hybridization.
    Falistocco E
    J Hered; 2000; 91(3):256-60. PubMed ID: 10833055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of the leghemoglobin gene on two chromosomes of Phaseolus vulgaris by in situ PCR linked-fluorescent in situ hybridization (FISH).
    Uchiumi T; Kuwashiro R; Miyamoto J; Abe M; Higashi S
    Plant Cell Physiol; 1998 Jul; 39(7):790-4. PubMed ID: 9729902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.