These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 10941915)

  • 1. Synthesis and degradation characteristics of salicylic acid-derived poly(anhydride-esters).
    Erdmann L; Uhrich KE
    Biomaterials; 2000 Oct; 21(19):1941-6. PubMed ID: 10941915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(ester-anhydrides) Derived from Esters of Hydroxy Acid and Cyclic Anhydrides.
    Arun Y; Ghosh R; Domb AJ
    Biomacromolecules; 2022 Aug; 23(8):3417-3428. PubMed ID: 35881559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternating Poly(ester-anhydride) by Insertion Polycondensation.
    Haim-Zada M; Basu A; Hagigit T; Schlinger R; Grishko M; Kraminsky A; Hanuka E; Domb AJ
    Biomacromolecules; 2016 Jun; 17(6):2253-9. PubMed ID: 27198864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.
    Dasgupta Q; Movva S; Chatterjee K; Madras G
    Int J Pharm; 2017 Aug; 528(1-2):732-740. PubMed ID: 28636893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior.
    Burkoth AK; Burdick J; Anseth KS
    J Biomed Mater Res; 2000 Sep; 51(3):352-9. PubMed ID: 10880076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and in vitro degradation of salicylate-derived poly(anhydride-ester microspheres).
    Yeagy BA; Prudencio A; Schmeltzer RC; Uhrich KE; Cook TJ
    J Microencapsul; 2006 Sep; 23(6):643-53. PubMed ID: 17118880
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization and in vitro degradation of a new family of alternate poly(ester-anhydrides) based on aliphatic and aromatic diacids.
    Jiang HL; Zhu KJ
    Biomaterials; 2001 Feb; 22(3):211-8. PubMed ID: 11197496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.
    Chandorkar Y; Bhagat RK; Madras G; Basu B
    Biomacromolecules; 2014 Mar; 15(3):863-75. PubMed ID: 24517727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-steroidal anti-inflammatory drug (NSAID)-derived poly(anhydride-esters) in bone and periodontal regeneration.
    Reynolds MA; Prudencio A; Aichelmann-Reidy ME; Woodward K; Uhrich KE
    Curr Drug Deliv; 2007 Jul; 4(3):233-9. PubMed ID: 17627497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled protein delivery from biodegradable tyrosine-containing poly(anhydride-co-imide) microspheres.
    Chiba M; Hanes J; Langer R
    Biomaterials; 1997 Jul; 18(13):893-901. PubMed ID: 9199758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pinosylvin-Based Polymers: Biodegradable Poly(Anhydride-Esters) for Extended Release of Antibacterial Pinosylvin.
    Bien-Aime S; Yu W; Uhrich KE
    Macromol Biosci; 2016 Jul; 16(7):978-83. PubMed ID: 27071713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolytic degradation of ricinoleic-sebacic-ester-anhydride copolymers.
    Krasko MY; Domb AJ
    Biomacromolecules; 2005; 6(4):1877-84. PubMed ID: 16004424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradable polymers derived from amino acids.
    Domb AJ
    Biomaterials; 1990 Nov; 11(9):686-9. PubMed ID: 2090303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of salicylate-based poly(anhydride-esters) formed via melt-condensation versus solution polymerization.
    Schmeltzer RC; Johnson M; Griffin J; Uhrich K
    J Biomater Sci Polym Ed; 2008; 19(10):1295-306. PubMed ID: 18854123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystalline and dynamic mechanical behaviors of synthesized poly(sebacic anhydride-co-ethylene glycol).
    Chan CK; Chu IM
    Biomaterials; 2003 Jan; 24(1):47-54. PubMed ID: 12417177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradable Polymers and Nanoparticles Built from Salicylic Acid.
    Akkad S; Serpell CJ
    Macromol Rapid Commun; 2018 Jul; 39(14):e1800182. PubMed ID: 29786901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear fatty acid terminated polyanhydrides.
    Teomim D; Domb AJ
    Biomacromolecules; 2001; 2(1):37-44. PubMed ID: 11749153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-Based Degradable Poly(ether-ester)s from Melt-Polymerization of Aromatic Ester and Ether Diols.
    Djouonkep LDW; Tchameni AP; Selabi NBS; Tamo AK; Doench I; Cheng Z; Gauthier M; Xie B; Osorio-Madrazo A
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poly(anhydride-ester) gemcitabine: Synthesis and particle engineering of a high payload hydrolysable polymeric drug for cancer therapy.
    Heyder RS; Sunbul FS; Almuqbil RM; Fines CB; da Rocha SRP
    J Control Release; 2021 Feb; 330():1178-1190. PubMed ID: 33212118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices.
    Cammas S; Béar MM; Moine L; Escalup R; Ponchel G; Kataoka K; Guérin P
    Int J Biol Macromol; 1999; 25(1-3):273-82. PubMed ID: 10416675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.