BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 10942082)

  • 1. Protochlorophyllide and chlorophyll forms in dark-grown stems and stem-related organs.
    Skribanek A; Apatini D; Inaoka M; Böddi B
    J Photochem Photobiol B; 2000; 55(2-3):172-7. PubMed ID: 10942082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct UV-A or UV-B irradiation induces protochlorophyllide photoreduction and bleaching in dark-grown pea (Pisum sativum L.) epicotyls.
    Erdei AL; Kósa A; Böddi B
    Photosynth Res; 2019 Apr; 140(1):93-102. PubMed ID: 30225812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light- and cold-stress effects on the greening process in epicotyls and young stems of red oak (Quercus rubra) seedlings.
    Skribanek A; Böddi B
    Tree Physiol; 2001 May; 21(8):549-54. PubMed ID: 11359713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlorophyll synthesis in dark-grown pine primary needles.
    Schoefs B; Franck F
    Plant Physiol; 1998 Dec; 118(4):1159-68. PubMed ID: 9847090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distribution of protochlorophyllide and chlorophyll within seedlings of the lip1 mutant of Pea.
    Seyedi M; Timko MP; Sundqvist C
    Plant Cell Physiol; 2001 Sep; 42(9):931-41. PubMed ID: 11577187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of spectral forms of protochlorophyllide in the region 670-730 nm.
    Stadnichuk IN; Amirjani MR; Sundqvist C
    Photochem Photobiol Sci; 2005 Feb; 4(2):230-8. PubMed ID: 15696242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Etioplasts with protochlorophyll and protochlorophyllide forms in the under-soil epicotyl segments of pea (Pisum sativum) seedlings grown under natural light conditions.
    Vitányi B; Kósa A; Solymosi K; Böddi B
    Physiol Plant; 2013 Jun; 148(2):307-15. PubMed ID: 23067197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of genes encoding the light-dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine.
    Skinner JS; Timko MP
    Plant Mol Biol; 1999 Feb; 39(3):577-92. PubMed ID: 10092184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue specific protochlorophyll(ide) forms in dark-forced shoots of grapevine (Vitis viniferaL.).
    Böddi B; Bòka K; Sundqvist C
    Photosynth Res; 2004; 82(2):141-50. PubMed ID: 16151870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Isolation and properties of the pigment-protein complex (protochlorophyllide - holochrome) from etiolated leaves of corn sprouts].
    Nikolaeva LF; Pivovarova LV; Kazakova AS; Kononenko AA
    Biokhimiia; 1981 Jan; 46(1):22-8. PubMed ID: 7248372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.).
    Erdei AL; Kósa A; Kovács-Smirová L; Böddi B
    Photosynth Res; 2016 Apr; 128(1):73-83. PubMed ID: 26519365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of bud scales and protochlorophyll(ide) forms in leaf primordia of closed and opened buds.
    Solymosi K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1075-85. PubMed ID: 16651257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protochlorophyllide spectral forms.
    Amirjani MR
    Pak J Biol Sci; 2010 Jun; 13(12):563-76. PubMed ID: 21061907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of plastids in soil-shaded lowermost hypocotyl segments of bean (Phaseolus vulgaris) during a 60-day cultivation period.
    Kakuszi A; Solymosi K; Böddi B
    Physiol Plant; 2017 Apr; 159(4):483-491. PubMed ID: 27734513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extinction of the in-vivo low-temperature fluorescence of chlorophyll a by long-wavelength-absorbing quenchers formed from protochlorophyllide.
    Dujardin E
    Prog Clin Biol Res; 1982; 102 Pt B():43-52. PubMed ID: 7163179
    [No Abstract]   [Full Text] [Related]  

  • 16. Protochlorophyllide phototransformation in the bundle sheath cells of Zea mays.
    Marchand M; Dewez D; Franck F; Popovic R
    J Photochem Photobiol B; 2004 Jul; 75(1-2):73-80. PubMed ID: 15246353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoactive protochlorophyllide regeneration in cotyledons and leaves from higher plants.
    Schoefs B; Bertrand M; Funk C
    Photochem Photobiol; 2000 Nov; 72(5):660-8. PubMed ID: 11107852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential regeneration of the NADPH: protochlorophyllide oxidoreductase oligomer complexes in pea epicotyls after bleaching.
    Szenzenstein A; Kósa A; Solymosi K; Sárvári E; Böddi B
    Physiol Plant; 2010 Jan; 138(1):102-12. PubMed ID: 20070845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Does a light-harvesting protochlorophyllide a/b-binding protein complex exist?
    Armstrong GA; Apel K; Rüdiger W
    Trends Plant Sci; 2000 Jan; 5(1):40-4. PubMed ID: 10637661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways of formation of pigment forms at the terminal photobiochemical stage of chlorophyll biosynthesis.
    Belyaeva OB; Litvin FF
    Biochemistry (Mosc); 2009 Dec; 74(13):1535-44. PubMed ID: 20210707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.