These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10942084)

  • 1. Substituent effects on electrophilicity of flavins: an experimental and semi-empirical molecular orbital study.
    Bosca F; Fernandez L; Heelis PF; Yano Y
    J Photochem Photobiol B; 2000; 55(2-3):183-7. PubMed ID: 10942084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical insight into the spectroscopy and photochemistry of isoalloxazine, the flavin core ring.
    Climent T; González-Luque R; Merchán M; Serrano-Andrés L
    J Phys Chem A; 2006 Dec; 110(50):13584-90. PubMed ID: 17165886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter- and intramolecular photoinduced electron transfer of flavin derivatives with extremely small reorganization energies.
    Murakami M; Ohkubo K; Fukuzumi S
    Chemistry; 2010 Jul; 16(26):7820-32. PubMed ID: 20496351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of aromaticity in the planarity of lumiflavin.
    Rodríguez-Otero J; Martínez-Núñez E; Peña-Gallego A; Vázquez SA
    J Org Chem; 2002 Sep; 67(18):6347-52. PubMed ID: 12201752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of alloxazines on cellulose.
    Sikorski M; Sikorska E; Khmelinskii IV; Gonzalez-Moreno R; Bourdelande JL; Siemiarczuk A
    Photochem Photobiol Sci; 2002 Sep; 1(9):715-20. PubMed ID: 12665311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bonding modulation of excited-state properties of flavins in a model of aqueous confined environment.
    Valle L; Vieyra FE; Borsarelli CD
    Photochem Photobiol Sci; 2012 Jun; 11(6):1051-61. PubMed ID: 22434390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and redox properties of N,N,N-1,3,5-trialkylated flavin derivatives and their activity as redox catalysts.
    Lindén AA; Hermanns N; Ott S; Krüger L; Bäckvall JE
    Chemistry; 2004 Dec; 11(1):112-9. PubMed ID: 15532052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly fluorescent flavins: rational molecular design for quenching protection based on repulsive and attractive control of molecular alignment.
    Suzuki H; Inoue R; Kawamorita S; Komiya N; Imada Y; Naota T
    Chemistry; 2015 Jun; 21(25):9171-8. PubMed ID: 25962532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excited states and reactivity of 5-deazaflavine. Comparative studies with flavine.
    Sun M; Song PS
    Biochemistry; 1973 Nov; 12(23):4663-9. PubMed ID: 4359373
    [No Abstract]   [Full Text] [Related]  

  • 11. Further computational studies on the conformation of 1,5-dihydrolumiflavin.
    Rizzo CJ
    Antioxid Redox Signal; 2001 Oct; 3(5):737-46. PubMed ID: 11761324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study.
    Moyon NS; Mitra S
    J Phys Chem A; 2011 Mar; 115(12):2456-64. PubMed ID: 21388154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics.
    Eckstein JW; Hastings JW; Ghisla S
    Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic transitions in the isoalloxazine ring and orientation of flavins in model membranes studied by polarized light spectroscopy.
    Johansson LB; Davidsson A; Lindblom G; Naqvi KR
    Biochemistry; 1979 Sep; 18(19):4249-53. PubMed ID: 486421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced oxidation of unsaturated lipids as sensitized by flavins.
    Huvaere K; Cardoso DR; Homem-de-Mello P; Westermann S; Skibsted LH
    J Phys Chem B; 2010 Apr; 114(16):5583-93. PubMed ID: 20377218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aggregation effects in visible-light flavin photocatalysts: synthesis, structure, and catalytic activity of 10-arylflavins.
    Daďová J; Kümmel S; Feldmeier C; Cibulková J; Pažout R; Maixner J; Gschwind RM; König B; Cibulka R
    Chemistry; 2013 Jan; 19(3):1066-75. PubMed ID: 23197435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and general properties of flavins.
    Edwards AM
    Methods Mol Biol; 2014; 1146():3-13. PubMed ID: 24764085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of a high-potential flavin analogue and its use as an active site probe with clostridial flavodoxin.
    Raibekas AA; Ramsey AJ; Jorns MS
    Biochemistry; 1993 Apr; 32(16):4420-9. PubMed ID: 8476868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of human glutathione reductase by 10-arylisoalloxazines: crystalline, kinetic, and electrochemical studies.
    Schönleben-Janas A; Kirsch P; Mittl PR; Schirmer RH; Krauth-Siegel RL
    J Med Chem; 1996 Mar; 39(7):1549-54. PubMed ID: 8691487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photophysical properties of structurally and electronically modified flavin derivatives determined by spectroscopy and theoretical calculations.
    Salzmann S; Martinez-Junza V; Zorn B; Braslavsky SE; Mansurova M; Marian CM; Gärtner W
    J Phys Chem A; 2009 Aug; 113(33):9365-75. PubMed ID: 19639947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.