BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10942565)

  • 1. Adsorption Behavior of Amino Acids on a Stainless Steel Surface.
    Imamura K; Mimura T; Okamoto M; Sakiyama T; Nakanishi K
    J Colloid Interface Sci; 2000 Sep; 229(1):237-246. PubMed ID: 10942565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of carboxyl groups on the adsorption behavior of low-molecular-weight substances on a stainless steel surface.
    Nagayasu T; Yoshioka C; Imamura K; Nakanishi K
    J Colloid Interface Sci; 2004 Nov; 279(2):296-306. PubMed ID: 15464793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption behavior of methylene blue and its congeners on a stainless steel surface.
    Imamura K; Ikeda E; Nagayasu T; Sakiyama T; Nakanishi K
    J Colloid Interface Sci; 2002 Jan; 245(1):50-7. PubMed ID: 16290334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of acidic amino residues to the adsorption of peptides onto a stainless steel surface.
    Imamura K; Kawasaki Y; Awadzu T; Sakiyama T; Nakanishi K
    J Colloid Interface Sci; 2003 Nov; 267(2):294-301. PubMed ID: 14583204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption characteristics of various organic substances on the surfaces of tantalum, titanium, and zirconium.
    Nagayasu T; Imamura K; Nakanishi K
    J Colloid Interface Sci; 2005 Jun; 286(2):462-70. PubMed ID: 15897059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Behavior of beta-Lactoglobulin at a Stainless Steel Surface: An Electrochemical Impedance Spectroscopy Study.
    Omanovic S; Roscoe SG
    J Colloid Interface Sci; 2000 Jul; 227(2):452-460. PubMed ID: 10873333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption characteristics of oligopeptides composed of acidic and basic amino acids on titanium surface.
    Imamura K; Kawasaki Y; Nagayasu T; Sakiyama T; Nakanishi K
    J Biosci Bioeng; 2007 Jan; 103(1):7-12. PubMed ID: 17298894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid adsorption on mesoporous materials: influence of types of amino acids, modification of mesoporous materials, and solution conditions.
    Gao Q; Xu W; Xu Y; Wu D; Sun Y; Deng F; Shen W
    J Phys Chem B; 2008 Feb; 112(7):2261-7. PubMed ID: 18217746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shear-flow induced detachment of Saccharomyces cerevisiae from stainless steel: influence of yeast and solid surface properties.
    Guillemot G; Vaca-Medina G; Martin-Yken H; Vernhet A; Schmitz P; Mercier-Bonin M
    Colloids Surf B Biointerfaces; 2006 May; 49(2):126-35. PubMed ID: 16621474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monolayers of 3-mercaptopropyl-amino acid to reduce the nonspecific adsorption of serum proteins on the surface of biosensors.
    Bolduc OR; Masson JF
    Langmuir; 2008 Oct; 24(20):12085-91. PubMed ID: 18823086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of amino acids (ALA, CYS, HIS, MET) on zeolites: fourier transform infrared and Raman spectroscopy investigations.
    Carneiro CE; de Santana H; Casado C; Coronas J; Zaia DA
    Astrobiology; 2011 Jun; 11(5):409-18. PubMed ID: 21671763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detergent-Induced Removal of beta-Lactoglobulin from Stainless Steel Surfaces as Influenced by Surface Pretreatment.
    Karlsson CA; Wahlgren MC; Olsson CO; Trägårdh AC
    J Colloid Interface Sci; 1999 Dec; 220(2):471-473. PubMed ID: 10607469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stainless steel electrospray probe: a dead end for phosphorylated organic compounds?
    Tuytten R; Lemière F; Witters E; Van Dongen W; Slegers H; Newton RP; Van Onckelen H; Esmans EL
    J Chromatogr A; 2006 Feb; 1104(1-2):209-21. PubMed ID: 16378618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in situ Infrared Spectroscopic Study of Glutamic Acid and of Aspartic Acid Adsorbed on TiO(2): Implications for the Biocompatibility of Titanium.
    Roddick-Lanzilotta AD; McQuillan AJ
    J Colloid Interface Sci; 2000 Jul; 227(1):48-54. PubMed ID: 10860593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption on stainless steel surfaces of biosurfactants produced by gram-negative and gram-positive bacteria: consequence on the bioadhesive behavior of Listeria monocytogenes.
    Meylheuc T; Methivier C; Renault M; Herry JM; Pradier CM; Bellon-Fontaine MN
    Colloids Surf B Biointerfaces; 2006 Oct; 52(2):128-37. PubMed ID: 16781848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular simulation of bovine beta-lactoglobulin adsorbed onto a positively charged solid surface.
    Hagiwara T; Sakiyama T; Watanabe H
    Langmuir; 2009 Jan; 25(1):226-34. PubMed ID: 19032076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of alpha amino acids at the water/goethite interface.
    Norén K; Loring JS; Persson P
    J Colloid Interface Sci; 2008 Mar; 319(2):416-28. PubMed ID: 18155715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT.
    Kang S; Xing B
    Langmuir; 2007 Jun; 23(13):7024-31. PubMed ID: 17508766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of ethyl(hydroxyethyl) cellulose-solid interaction: influence of hydrophobic modification.
    Wang J; Somasundaran P
    J Colloid Interface Sci; 2006 Jan; 293(2):322-32. PubMed ID: 16081080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.