These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10942732)

  • 21. 31P NMR magnetization-transfer measurements of ATP turnover during steady-state isometric muscle contraction in the rat hind limb in vivo.
    Brindle KM; Blackledge MJ; Challiss RA; Radda GK
    Biochemistry; 1989 May; 28(11):4887-93. PubMed ID: 2765517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo.
    Jubrias SA; Crowther GJ; Shankland EG; Gronka RK; Conley KE
    J Physiol; 2003 Dec; 553(Pt 2):589-99. PubMed ID: 14514869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The signal transduction function for oxidative phosphorylation is at least second order in ADP.
    Jeneson JA; Wiseman RW; Westerhoff HV; Kushmerick MJ
    J Biol Chem; 1996 Nov; 271(45):27995-8. PubMed ID: 8910406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical study of rat soleus muscle using caged ATP and X-ray diffraction: high ADP affinity of slow cross-bridges.
    Horiuti K; Yagi N; Takemori S
    J Physiol; 1997 Jul; 502 ( Pt 2)(Pt 2):433-47. PubMed ID: 9263922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of stimulation frequency on contraction-induced glucose transport in rat skeletal muscle.
    Ihlemann J; Ploug T; Hellsten Y; Galbo H
    Am J Physiol Endocrinol Metab; 2000 Oct; 279(4):E862-7. PubMed ID: 11001769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dominant and sensitive control of oxidative flux by the ATP-ADP carrier in human skeletal muscle mitochondria: Effect of lysine acetylation.
    Willis WT; Miranda-Grandjean D; Hudgens J; Willis EA; Finlayson J; De Filippis EA; Zapata Bustos R; Langlais PR; Mielke C; Mandarino LJ
    Arch Biochem Biophys; 2018 Jun; 647():93-103. PubMed ID: 29653079
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energetics of muscle contraction: the whole is less than the sum of its parts.
    Kushmerick MJ; Conley KE
    Biochem Soc Trans; 2002 Apr; 30(2):227-31. PubMed ID: 12023856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic control of oxygen consumption during contractions in self-perfused skeletal muscle.
    Wüst RC; Grassi B; Hogan MC; Howlett RA; Gladden LB; Rossiter HB
    J Physiol; 2011 Aug; 589(Pt 16):3995-4009. PubMed ID: 21690197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of cellular energy metabolism on contractions of porcine carotid artery smooth muscle.
    Dillon PF
    J Vasc Res; 2000; 37(6):532-9. PubMed ID: 11146407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Chanseaume E; Bielicki G; Tardy AL; Renou JP; Freyssenet D; Boirie Y; Morio B
    Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endotoxemia does not limit energy supply in exercising rat skeletal muscle.
    Giannesini B; Izquierdo M; Dalmasso C; Le Fur Y; Cozzone PJ; Verleye M; Le Guern ME; Gillardin JM; Bendahan D
    Muscle Nerve; 2008 Apr; 37(4):496-504. PubMed ID: 18260074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action.
    Ryschon TW; Fowler MD; Wysong RE; Anthony A; Balaban RS
    J Appl Physiol (1985); 1997 Sep; 83(3):867-74. PubMed ID: 9292475
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of inorganic phosphate and pH on ATP utilization in fast and slow skeletal muscle fibers.
    Potma EJ; van Graas IA; Stienen GJ
    Biophys J; 1995 Dec; 69(6):2580-9. PubMed ID: 8599665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Thompson CH; Kemp GJ; Sanderson AL; Radda GK
    J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A distribution-moment model of energetics in skeletal muscle.
    Ma SP; Zahalak GI
    J Biomech; 1991; 24(1):21-35. PubMed ID: 2026631
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffusional constraints on energy metabolism in skeletal muscle.
    Locke BR; Kinsey ST
    J Theor Biol; 2008 Sep; 254(2):417-29. PubMed ID: 18619978
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glycolysis in contracting rat skeletal muscle is controlled by factors related to energy state.
    Ortenblad N; Macdonald WA; Sahlin K
    Biochem J; 2009 May; 420(2):161-8. PubMed ID: 19250062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of altered pyruvate dehydrogenase activity on contracting skeletal muscle bioenergetics.
    Kasper JD; Meyer RA; Beard DA; Wiseman RW
    Am J Physiol Regul Integr Comp Physiol; 2019 Jan; 316(1):R76-R86. PubMed ID: 30462525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.