These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 10943056)

  • 1. Second-order model of membrane electric field induced by alternating external electric fields.
    Kotnik T; Miklavcic D
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1074-81. PubMed ID: 10943056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical evaluation of the distributed power dissipation in biological cells exposed to electric fields.
    Kotnik T; Miklavcic D
    Bioelectromagnetics; 2000 Jul; 21(5):385-94. PubMed ID: 10899774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boundary-element calculations for amplification of effects of low-frequency electric fields in a doublet-shaped biological cell.
    Sekine K; Takeda T; Nagaomo K; Matsushima E
    Bioelectrochemistry; 2010 Feb; 77(2):106-13. PubMed ID: 19683969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: a theoretical analysis.
    Qin Y; Lai S; Jiang Y; Yang T; Wang J
    Bioelectrochemistry; 2005 Sep; 67(1):57-65. PubMed ID: 15967401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of a confined spherical cell in uniform and heterogeneous applied electric fields.
    Gowrishankar TR; Stewart DA; Weaver JC
    Bioelectrochemistry; 2006 May; 68(2):181-90. PubMed ID: 16230052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pacemaker interference and low-frequency electric induction in humans by external fields and electrodes.
    Dawson TW; Stuchly MA; Caputa K; Sastre A; Shepard RB; Kavet R
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1211-8. PubMed ID: 11008422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mechanism for action of oscillating electric fields on cells.
    Panagopoulos DJ; Messini N; Karabarbounis A; Philippetis AL; Margaritis LH
    Biochem Biophys Res Commun; 2000 Jun; 272(3):634-40. PubMed ID: 10860806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling assemblies of biological cells exposed to electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Oct; 45(10):1259-71. PubMed ID: 9775540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analytical model for the transmembrane voltage induced on a permeabilized cell membrane in suspensions exposed to DC pulse fields].
    Qin Y; Jiang Y; Lai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):1-4. PubMed ID: 17333880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanism of the effect of weak electromagnetic fields on the living body].
    Sidorenko VM
    Biofizika; 2001; 46(3):500-4. PubMed ID: 11449551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells.
    Sebastián JL; Muñoz S; Sancho M; Alvarez G; Miranda JM
    Phys Med Biol; 2007 Dec; 52(23):6831-47. PubMed ID: 18029978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal noise limit on the sensitivity of cellular membranes to power frequency electric and magnetic fields.
    Kaune WT
    Bioelectromagnetics; 2002 Dec; 23(8):622-8. PubMed ID: 12395418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency transient electric and magnetic fields coupling to child body.
    Ozen S
    Radiat Prot Dosimetry; 2008; 128(1):62-7. PubMed ID: 17526911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption.
    Simeonova M; Gimsa J
    Bioelectromagnetics; 2006 Dec; 27(8):652-66. PubMed ID: 16917873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analyses of cellular transmembrane voltage in suspensions induced by high-frequency fields.
    Zou Y; Wang C; Peng R; Wang L; Hu X
    Bioelectrochemistry; 2015 Apr; 102():64-72. PubMed ID: 25528063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological cells with gap junctions in low-frequency electric fields.
    Fear EC; Stuchly MA
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):856-66. PubMed ID: 9644894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields.
    Obermeier A; Matl FD; Friess W; Stemberger A
    Bioelectromagnetics; 2009 May; 30(4):270-9. PubMed ID: 19226539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell culture dosimetry for low-frequency magnetic fields.
    Hart FX
    Bioelectromagnetics; 1996; 17(1):48-57. PubMed ID: 8742756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.