These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10943057)

  • 1. A micromachined silicon depth probe for multichannel neural recording.
    Yoon TH; Hwang EJ; Shin DY; Park SI; Oh SJ; Jung SC; Shin HC; Kim SJ
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1082-7. PubMed ID: 10943057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-yield fabrication process for silicon neural probes.
    Oh SJ; Song JK; Kim JW; Kim SJ
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):351-4. PubMed ID: 16485767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon-substrate intracortical microelectrode arrays for long-term recording of neuronal spike activity in cerebral cortex.
    Kipke DR; Vetter RJ; Williams JC; Hetke JF
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):151-5. PubMed ID: 12899260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex.
    Vetter RJ; Williams JC; Hetke JF; Nunamaker EA; Kipke DR
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):896-904. PubMed ID: 15188856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranial nerves.
    Kovacs GT; Storment CW; Halks-Miller M; Belczynski CR; Della Santina CC; Lewis ER; Maluf NI
    IEEE Trans Biomed Eng; 1994 Jun; 41(6):567-77. PubMed ID: 7927376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
    Suner S; Fellows MR; Vargas-Irwin C; Nakata GK; Donoghue JP
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):524-41. PubMed ID: 16425835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling limitations of silicon multichannel recording probes.
    Najafi K; Ji J; Wise KD
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):1-11. PubMed ID: 2303265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parylene flexible neural probes integrated with microfluidic channels.
    Takeuchi S; Ziegler D; Yoshida Y; Mabuchi K; Suzuki T
    Lab Chip; 2005 May; 5(5):519-23. PubMed ID: 15856088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise performance design of CMOS preamplifier for the active semiconductor neural probe.
    Kim KH; Kim SJ
    IEEE Trans Biomed Eng; 2000 Aug; 47(8):1097-105. PubMed ID: 10943059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible depth probe using liquid crystal polymer.
    Lee SE; Jun SB; Lee HJ; Kim J; Lee SW; Im C; Shin HC; Chang JW; Kim SJ
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):2085-94. PubMed ID: 22718688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regeneration microelectrode array for peripheral nerve recording and stimulation.
    Kovacs GT; Storment CW; Rosen JM
    IEEE Trans Biomed Eng; 1992 Sep; 39(9):893-902. PubMed ID: 1473818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-multi-probe electrode array to measure neural signals.
    Chen CH; Yao DJ; Tseng SH; Lu SW; Chiao CC; Yeh SR
    Biosens Bioelectron; 2009 Mar; 24(7):1911-7. PubMed ID: 19027284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional microelectrode array for chronic neural recording.
    Hoogerwerf AC; Wise KD
    IEEE Trans Biomed Eng; 1994 Dec; 41(12):1136-46. PubMed ID: 7851915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-yield microassembly structure for three-dimensional microelectrode arrays.
    Bai Q; Wise KD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):281-9. PubMed ID: 10743769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single neuronal recordings using surface micromachined polysilicon microelectrodes.
    Muthuswamy J; Okandan M; Jackson N
    J Neurosci Methods; 2005 Mar; 142(1):45-54. PubMed ID: 15652616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel glass microprobe arrays for neural recording.
    Lin CW; Lee YT; Chang CW; Hsu WL; Chang YC; Fang W
    Biosens Bioelectron; 2009 Oct; 25(2):475-81. PubMed ID: 19726175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multichannel neural probe for selective chemical delivery at the cellular level.
    Chen J; Wise KD; Hetke JF; Bledsoe SC
    IEEE Trans Biomed Eng; 1997 Aug; 44(8):760-9. PubMed ID: 9254989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based analysis of cortical recording with silicon microelectrodes.
    Moffitt MA; McIntyre CC
    Clin Neurophysiol; 2005 Sep; 116(9):2240-50. PubMed ID: 16055377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.