These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10943099)

  • 1. [Lowered intrarenal protein degradation--an alternative path to glomerulosclerosis and tubulo-interstitial fibrosis].
    Teschner M; Heidland A
    Med Klin (Munich); 2000 Jul; 95(7):385-91. PubMed ID: 10943099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chrysin Inhibits Advanced Glycation End Products-Induced Kidney Fibrosis in Renal Mesangial Cells and Diabetic Kidneys.
    Lee EJ; Kang MK; Kim DY; Kim YH; Oh H; Kang YH
    Nutrients; 2018 Jul; 10(7):. PubMed ID: 29987200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy.
    Wang SN; LaPage J; Hirschberg R
    Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diabetic nephropathy: mechanisms of renal disease progression.
    Kanwar YS; Wada J; Sun L; Xie P; Wallner EI; Chen S; Chugh S; Danesh FR
    Exp Biol Med (Maywood); 2008 Jan; 233(1):4-11. PubMed ID: 18156300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced glycation end products and the progressive course of renal disease.
    Heidland A; Sebekova K; Schinzel R
    Am J Kidney Dis; 2001 Oct; 38(4 Suppl 1):S100-6. PubMed ID: 11576932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The key role of the transforming growth factor-beta system in the pathogenesis of diabetic nephropathy.
    Chen S; Hong SW; Iglesias-de la Cruz MC; Isono M; Casaretto A; Ziyadeh FN
    Ren Fail; 2001; 23(3-4):471-81. PubMed ID: 11499562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential role of advanced glycosylation end products in promoting restenosis in diabetes and renal failure.
    Aronson D
    Med Hypotheses; 2002 Sep; 59(3):297-301. PubMed ID: 12208156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis.
    Wang SN; Hirschberg R
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F554-60. PubMed ID: 10751215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury?
    Gilbert RE; Cooper ME
    Kidney Int; 1999 Nov; 56(5):1627-37. PubMed ID: 10571771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular mechanisms of nephro-protective action of enalapril in experimental chronic renal failure].
    Ciechanowicz A
    Ann Acad Med Stetin; 1999; Suppl 52():1-93. PubMed ID: 10589103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effect of angiotensin-converting enzyme inhibitors on the progression of chronic renal failure].
    Bernadet-Monrozies P; Rostaing L; Kamar N; Durand D
    Presse Med; 2002 Nov; 31(36):1714-20. PubMed ID: 12467154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localization of glycated proteins in the glomeruli of patients with diabetic nephropathy.
    Sakai H; Jinde K; Suzuki D; Yagame M; Nomoto Y
    Nephrol Dial Transplant; 1996; 11 Suppl 5():66-71. PubMed ID: 9044311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced glycation end products and the kidney.
    Bohlender JM; Franke S; Stein G; Wolf G
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F645-59. PubMed ID: 16159899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Renal arterial disease-induced tubulo-interstitial lesions].
    Kida H; Yoshimura M
    Nihon Rinsho; 1995 Aug; 53(8):2034-9. PubMed ID: 7563646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of AGEs in diabetic nephropathy.
    Fukami K; Yamagishi S; Ueda S; Okuda S
    Curr Pharm Des; 2008; 14(10):946-52. PubMed ID: 18473844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney.
    Ha H; Lee HB
    Nephrology (Carlton); 2005 Oct; 10 Suppl():S7-10. PubMed ID: 16174288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible mechanisms explaining the tendency towards interstitial fibrosis in aristolochic acid-induced acute tubular necrosis.
    Yang L; Li X; Wang H
    Nephrol Dial Transplant; 2007 Feb; 22(2):445-56. PubMed ID: 17124284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progression of chronic renal disease.
    Klahr S
    Heart Dis; 2001; 3(3):205-9. PubMed ID: 11975793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced TGF-beta/Smad signaling in the early stage of diabetic nephropathy is independent of the AT1a receptor.
    Okazaki Y; Yamasaki Y; Uchida HA; Okamoto K; Satoh M; Maruyama K; Maeshima Y; Sugiyama H; Sugaya T; Kashihara N; Makino H
    Clin Exp Nephrol; 2007 Mar; 11(1):77-87. PubMed ID: 17385003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGF-β: the connecting link between nephropathy and fibrosis.
    Sutariya B; Jhonsa D; Saraf MN
    Immunopharmacol Immunotoxicol; 2016; 38(1):39-49. PubMed ID: 26849902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.